Зависимости между напряжениями и внутренними силовыми факторами. Дифференциальные зависимости между внутренними усилиями при изгибе

18.03.2023

Зависимость между моментами инерции при параллельном переносе осей и при повороте осей.

При параллельном переносе осей:

Если S x и S y равны нулю, тогда: ;

При повороте осей:

и для центробежного момента инерции:

Главные оси, главные моменты инерции. Определение направления главных осей. Определение значения главных моментов инерции.

Оси, относительно которых центробежный момент инерции сечения обращается в нуль, называются главным осями. Моменты инерции относительно главных осей инерции называются главными моментами инерции сечения. Чтобы определить положение главных центральных осей несимметричной фигуры, повернем произвольную начальную систему центральных осей z,yна некоторый угол при котором центробежный момент инерции становится равным нулю.

Откуда .

Определение значений главных моментов инерции:

Причем верхние знаки следует брать при .

Виды напряженного состояния. Тензор напряжений. Закон парности касательных напряжений.

Напряженным состоянием тела в точке называют совокупность нормальных и касательных напряжений, действующих по всем площадкам, содержащим точку.

Линейное – если одно главное напряжение отлично от нуля, а 2 других равны 0.

Плоское – если 2 главных напряжения отличны от нуля, а одно равно нулю.

Объемное – если все 3 главных напряжения отличны от нуля.

– тензор напряжений.

Закон парности касательных напряжений:

Плоское напряженное состояние. Напряжения по наклонным площадкам. Определение напряжений с помощью кругов Мора. Прямая и обратная задача.

Плоским называется напряженное состояние, при котором одно из трех главных напряжений равно нулю.

Напряжения по наклонным площадкам:

Определение напряжений с помощью кругов Мора: ;

Координаты точек круга соответствуют нормальным и касательным напряжениям на различных площадках. Откладываем от оси из центра С луч под углом 2 ( , то против часовой стрелки), находим точку D, координаты которой: , . Можно графически решать как прямую, так и обратную задачи.

Прямая задача: , ,

Определим напряжения и , действующие по любой наклонной площадке по известным главным напряжениям и .

Обратная задача: ,

По известным нормальным касательным напряжениям, действующим в двух взаимно перпендикулярных площадках, найти главные (max и min, 1и 2) напряжения и положение главных площадок. Касательные напряжения по главным площадкам равны 0). Угол определяющий положение главных площадок: . Если одно из главных напряжений окажется отрицательным, то их надо обозначить , , если оба отрицательны, то , .



Косой изгиб. Определение напряжений, условие прочности.

Изгиб с кручением стрежней круглого поперечного сечения. Определение расчетного напряжения и проверка прочности.

σ=√(Mx^2+My^2)/Wно; τ=Mкр/Wρ; По четвертой энергетической теории: σmax^IV=√(σ^2+3*τ^2)

Внутренние силовые факторы. Метод сечений. Понятие о напряжениях. Связь между внутренними силовыми факторами и напряжениями.

Чтобы найти внутренние силы воспользуемся методом сечений РОЗУ. Р – разрезаем произвольный плоскостью на А и В. О – отбрасываем одну из этих частей, например В. Рассмотрим оставшуюся часть. З – заменяем. Внутренние силы мы заменяем главным вектором и главным моментом. Раскладываем главный вектор и главный момент в плоскости на оси. Внутренние силовые факторы:

Qx, Qy –вызывают сдвиг – перерезывающие поперечные силы; N – нормальная продольная шина, растяжение, сжатие бруса; Mz – крутящий момент; Mx, My – изгибающий момент. График изменения внутренного фактора при передвижении вдоль оси стержня называется эпюрой. У – уравновешиваем.

Выделим в рассматриваемом сечении точку B, а в окрестности этой точки – элементарную площадку с площадью . Пусть – равнодействующая всех внутренних сил, действующих на площадке. Отношение называется средним напряжением на площадке , которое характеризует среднюю интенсивность распределения внутренних сил на этой площадке. Предел этого отношения называется полным напряжением в точке B. Это напряжение можно разложить на составляющие: нормальное и касательные к плоскости сечения. Нормальная составляющая называется нормальным напряжением; составляющая, лежащая в плоскости сечения, называется касательным напряжением . Касательную составляющую раскладывают на 2 перпендикулярные составляющие вдоль осей x и y - и . Величина полного напряжения . Связь напряжений с внутренними силовыми факторами может быть описана следующимисоотношениями: 2. Растяжение и сжатие. Напряжение. Деформация. Условия прочности и жесткости. Под растяжением (сжатием) понимают такой вид нагружения, при котором в поперечных сечениях стержня возникают только продольные силы, а прочие силовые факторы равны нулю. Деформацией называется изменение формы и размеров тела под действием напряжений. Напряжение - сила, действующая на единицу площади сечения детали.Условие прочности: , условие жесткости: .3. Механические характеристики материалов. Испытание материалов на растяжение сжатие. Под механическими характеристиками подразумеваются значения напряжений и деформаций, соответствующие определенным точкам на диаграмме условных напряжений.Пределом пропорциональности называется наибольшее напряжение, до которого деформации прямо пропорциональны напряжениям.Пределом упругости называется напряжение, до которого материал не получает остаточных деформаций.Пределом текучести называется напряжение, при котором деформации растут без заметного увеличения нагрузки.Пределом прочности называется максимальное напряжение, выдерживаемое материалом при растяжении. Пределом упругости считается напряжение, при котором остаточные деформации достигают заранее установленной величины.4. Геометрические характеристики плоских сечений. Определение центра тяжести сложных сечений. Геометрические характеристики – числовые величины, определяющие размеры, форму, расположение поперечного сечения однородного по упругим свойствам деформируемого элемента конструкции.

Центр тяжести сложного сечения определяется из условия

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте , исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Понятие растяжения как вида нагружения, особенности действия сил и основные характеристики. Различия между сжатием и растяжением. Сущность напряжения, возникающего в поперечном сечении растянутого стержня, понятие относительного удлинения стержня.

    реферат , добавлен 23.06.2010

    Потенциальная энергия заряда в однородном поле и потенциальная энергия взаимодействия точечных зарядов. Понятие разности потенциалов. Связь напряжения и напряженности. Принцип суперпозиции для потенциалов. Понятие эквипотенциальных поверхностей.

    контрольная работа , добавлен 06.10.2013

    Общая характеристика сопротивления материалов. Анализ прочности, жесткости, устойчивости. Сущность схематизации геометрии реального объекта. Брус, оболочка, пластина, массив как отдельные тела простой геометрической формы. Особенности напряжения.

    презентация , добавлен 22.11.2012

    Определение размеров поперечных сечений стержней, моделирующих конструкцию робота-манипулятора. Вычисление деформации элементов конструкции, линейного и углового перемещения захвата. Построение матрицы податливости системы с помощью интеграла Мора.

    курсовая работа , добавлен 05.04.2013

    Вычисление реакций опор в рамах и балках с буквенными и числовыми обозначениями нагрузки. Подобор номеров двутавровых сечений. Проведение расчета поперечных сил и изгибающих моментов. Построение эпюр внутренних усилий. Определение перемещения точек.

    курсовая работа , добавлен 05.01.2015

    Теорема о циркуляции вектора. Работа сил электростатического поля. Потенциальная энергия. Разность потенциалов, связь между ними и напряженностью. Силовые линии и эквипотенциальные поверхности. Расчет потенциалов простейших электростатических полей.

    презентация , добавлен 13.02.2016

    Энергия ветра и возможности её использовании. Работа поверхности при действии на нее силы ветра. Работа ветрового колеса крыльчатого ветродвигателя. Перспективы развития ветроэнергетики в Казахстане. Преимущества и недостатки систем ветродвигателей.

    реферат , добавлен 27.10.2014

    Задача сопротивления материалов как науки об инженерных методах расчета на прочность, жесткость и устойчивость элементов конструкций. Внешние силы и перемещения. Классификация нагрузки по характеру действия. Понятие расчетной схемы, схематизация нагрузок.

    Внутренние силы определяются методом сечений . Для демонстрации этого метода рассмотрим тело, находящееся в равновесии (рис.1.4).

    Мысленно проводим сечение некоторой плоскостью в месте, где необходимо определить внутренние усилия. Так как связи между частицами устранены, то необходимо действие правой части на левую и левой на правую заменить системой сил в сечении. Ими и являются внутренние силы, которые по принципу действия и противодействия всегда взаимны. Независимо от того, как эти силы распределены по сечению, они приводятся к центру тяжести сечения в виде главного вектора внутренних сил и главного момента внутренних сил
    . Определяются они из уравнений равновесия оставленной в рассмотрении безразлично какой части элемента (в данном случае левой). Для составления уравнений равновесия в сечении выбирают систему координат, и вектора и раскладываются по этим осям на шесть составляющих: три силы (продольное внутреннее усилие
    и поперечные усилия , ) и три момента (крутящий момент
    и изгибающие моменты
    ,
    ), которые определяются из шести уравнений равновесия (рис. 1.5).

    Таким образом, при помощи метода сечений можно определить не закон распределения внутренних усилий по сечению, а только их равнодействующие. Для решения задач прочности нужно знать характер распределения сил по сечению, т.е. ввести числовую меру. За такую меру принимается напряжение.
    ^

    1.6 Напряжения. Связь напряжений с внутренними силовыми факторами. Принцип Сен-Венана


    Напряжения – интенсивность действия усилий в данной точке или внутреннее усилие, приходящееся на единицу площади

    Если выделить малую площадку
    в сечении и обозначить внутреннее усилие, действующее на нее
    (рис. 1.6), вектор полного напряжения в точке тела будет определяться формулой

    , (1.1)

    Задается вектор полного напряжения своими проекциями на оси
    , , . Для этого обозначим проекции вектора на оси
    ,
    ,
    (рис. 1.7) и найдем соответствующие проекции полного напряжения:

    Нормальное напряжение

    , (1.2)

    Рис. 1.7 - касательное напряжение вдоль оси

    , (1.3)

    Касательное напряжение вдоль оси

    . (1.4)

    Если закон распределения напряжений по сечению известен, то с помощью формул (1.2) – (1.4) и рисунков (1.8), (1.5) можно получить обратную связь между напряжениями и внутренними силовыми факторами

    , (1.5)
    Напряжения, вызванные локальной нагрузкой в точках тела, достаточно удаленных от места приложения к нему этой нагрузки, мало зависят от конкретного характера распределения нагрузки, а определяются только ее главным вектором и моментом.

    Нагрузка называется локальной, если размеры площадки, к которой она приложена, малы по сравнению с размерами тела.

    НАГРУЗКИ

    Рассмотрим балку, находящуюся под действием плоской системы сил (рис. 12.7). Двумя поперечными сечениями, отстоящими на расстоянии друг от друга, выделим из балки элемент так, чтобы на него не действовали внешние сосредоточенные силы и моменты.

    На левый торец элемента действуют внутренние усилия М и Q (рис. 13.7), а на правый Здесь представляют собой приращения величин внутренних усилий на участке балки. Кроме того, на элемент действует распределенная нагрузка, перпендикулярная к оси балки; интенсивность ее у левого конца элемента равна q, а у правого (рис. 13.7) .

    Так как вся балка в целом находится в равновесии, то в равновесии находится и ее элемент Составим уравнение равновесия элемента в виде суммы проекций на ось у всех действующих на него сил (рис. 13.7):

    Здесь второе слагаемое представляет собой величину высшего порядка малости; отбрасывая его, получаем

    Итак, первая производная от. поперечной i силы по абсциссе сечения равна интенсивно распределенной нагрузки, перпендикулярной к оси балки.

    Составим теперь уравнение равновесия элемента в виде суммы моментов действующих на него сил относительно точки К (рис. 13.7):

    Отбросив бесконечно малые величины высших (второго и третьего) порядков, получим:

    Таким образом, первая производная от изгибающего момента по абсциссе сечения равна поперечной силе. Эта зависимость называется теоремой Журавского.

    Зависимости (5.7) и (6.7) действительны, когда абсцисса поперечного сечения возрастает от левого конца балки к правому. Если, наоборот, абсцисса х возрастает от правого конца балки к левому, то в правых частях формул (5.7) и (6.7) перед q и Q должен стоять знак «минус».

    Из курса высшей математики известен геометрический смысл первой производной при любом значении аргумента она равна тангенсу угла а между касательной к кривой (в точке с координатами и положительным направлением оси Положительные и отрицательные значения угла а показаны на рис. 14.7, а.

    Если первая производная (а следовательно, и угол а) положительна, то функция возрастает (точка на рис. 14.7, а), а если она отрицательна, - то убывает (точка на рис. 14.7, а). Экстремум (максимум или минимум) функции имеется при тех значениях при которых производная равна нулю и, следовательно, угол а также равен нулю, т. е. касательная к кривой параллельна оси (точка К на рис. 14.7, а).

    Используя изложенные зависимости между функцией и ее первой производной, из теоремы Журавского можно сделать ряд важных выводов:

    1. Тангенс угла между касательной к линии, ограничивающей эпюру М, и осью эпюры равен поперечной силе Q (рис. 14.7, б, в), т. е.

    Так, например, тангенс отрицательного угла а (рис. 10.7, в) на участке II балки, изображенной на рис. 10.7, а, имеет значение т. е. равен поперечной силе Q на этом участке (рис. 10.7, б). На участках III и IV этой же балки поперечные силы Q одинаковы и равны (см. рис. 10.7, б). В соответствии с этим прямые на рис. 10.7, в параллельны друг другу; тангенс угла их наклона к оси эпюры равен

    2. На участках балки, на которых поперечная сила положительна, изгибающий момент возрастает (слева направо), а на участках, на которых она отрицательна, - убывает.

    Для примера на рис. 15.7, а изображены четыре эпюры Q, а под каждой из них на рис. 15.7, б, два из возможных вариантов эпюры М. Первым двум эпюрам Q (с положительными ординатами) соответствуют эпюры М с возрастающими (слева направо) ординатами, т. е. с положительными углами Последним двум эпюрам Q (с отрицательными ординатами) соответствуют эпюры М с убывающими (слева направо) ординатами, т. е. с отрицательными углами Этот же вывод можно проиллюстрировать эпюрами Q и М, изображенными на рис. 10.7: на участке II балки поперечная сила отрицательна, а на участке III - положительна (см. рис. 10.7, б); в соответствии с этим на участке II изгибающие моменты убывают (в алгебраическом смысле), а на участке - возрастают (см. рис. 10.7, в).

    3. Чем больше по абсолютной величине значение поперечной силы Q, тем круче линия, ограничивающая эпюру М. Этот вывод непосредственно вытекает из зависимости (7.7). В соответствии с данным выводом линии, ограничивающие эпюры М (рис. 15.7, б, в), круче в точках чем в точках а, так как поперечные силы больше по абсолютной величине, чем Линии, ограничивающие эпюры М, не могут иметь очертаний, показанных на рис. 15.7, б, в пунктиром, так как они тогда были бы круче в точках а, чем в точках b, что невозможно при поперечных силах меньших (по абсолютной величине) Такую же зависимость между эпюрами Q и М можно проследить и на рис. 10.7 и 11.7.

    На основании рис. 15.7 можно сделать вывод о том, что на участке балки с возрастающими (в алгебраическом смысле) слева направо значениями Q линия, ограничивающая эпюру М, обращена выпуклостью вниз, а с убывающими - выпуклостью вверх.

    4. На участке балки, на котором поперечная сила имеет постоянное значение, эпюра М ограничена прямой линией (см., например, на рис. 10.7 эпюры Q и М на участках III и IV балки). При эта линия наклонена к оси эпюры М под некоторым углом (где - см. вывод 1), а при она параллельна оси эпюры.

    (см. скан)

    В последнем случае соответствующий участок балки находится в состоянии чистого изгиба.

    5. Если на границе соседних участков балки эпюра Q не имеет скачка, то линии, ограничивающие эпюру М на этих участках, сопрягаются без перелома, т. е. имеют в точке сопряжения общую касательную.

    На рис. 16.7, а показаны две эпюры Q, не имеющие скачков на границах соседних участков (в сечениях А). На рис. 16.7, б сплошными линиями изображены правильные сопряжения линий, ограничивающих эпюры М (без переломов в точках а), а пунктирными линиями - неправильные варианты сопряжения.

    6. Если на границе соседних участков балки в эпюре Q имеется скачок, то линии, ограничивающие эпюру М на этих участках, сопрягаются с переломом, т. е. не имеют в точке сопряжения общей касательной.

    На рис. 17.7, а показаны три эпюры Q, имеющие скачки на границах соседних участков (в сечениях А), а на рис. 17.7,б - соответствующие им сопряжения линий, ограничивающих эпюры переломами в точках а.

    7. Изгибающий момент достигает максимума или минимума в сечениях балки, в которых поперечная сила равна нулю; касательная к линии, ограничивающей эпюру М, в этом сечении параллельна оси эпюры.

    Рассмотрим расчетную схему балки с произвольной распределенной нагрузкой (рис.2).

    Рис.2. Схема изгиба балки:
    а) расчетная модель, б) фрагмент балки

    Составим уравнение равновесия:

    Таким образом, действительно: первая производная от внутреннего изгибающего момента по линейной координате равна поперечной силе в сечении.

    Это известное свойство функции и ее первой производной успешно используется при проверке правильности построения эпюр. Так, для расчетной схемы консольной балки (рис.1) эта связь дает следующие проверочные результаты:

    И М убывает от 0 до –Pl .

    И М х .

    Рассмотрим второй характерный пример изгиба двухопорной балки (рис.3).

    а) расчетная схема, б) модель первого участка, в) модель второго участка, г) эпюра поперечных сил, д) эпюра изгибающих моментов

    Рис.3. Изгиб двухопорной балки:

    Очевидно, что опорные реакции R A = R B :

    • < б) (рис.3 участка первого>
    • для второго участка (рис.3 в) –

    Эпюры внутренних усилий представлены соответственно на рис.3 г и 3 д.

    На основе дифференциальной связи Q и М , получим:

    • для первого участка:

    Q > 0 и М возрастает от нуля до .

    Q = const и M x

    • для второго участка:

    Q < 0 и М убывает с до нуля.

    Q = const и M также пропорционален х , т.е. изменяется по линейному закону.

    Опасным в данном примере является сечение балки в центре пролета:

    Третий характерный пример связан с использованием распределенной по длине балки нагрузки (рис.4). Следуя методике, принятой ранее, очевидно равенство опорных реакций: , а для искомого сечения (рис.4 б) выражения для внутренних усилий приобретают вид:

    а) расчетная схема, б) отсеченная часть, в) эпюра поперечных сил, г) эпюра внутренних изгибающих моментов

    Рис.4 Двухопорная балка с равномерно распределенной нагрузкой:

    На обеих опорах изгибающий момент отсутствует. Тем не менее опасным сечением балки будет центр пролета при . Действительно, исходя из свойства функции и производной при , внутренний изгибающий момент достигает экстремума. Для нахождения исходной координаты х 0 (рис.4 в) в общем случае приравняем выражение поперечной силы к нулю. В итоге получим

    После подстановки в выражение изгибающего момента получим:

    Таким образом,

    Необходимо отметить, что техника построения эпюр при изгибе наиболее трудно усваивается слушателями. Вам представляется возможность научиться «быстрому» построению эпюр на тесторе-тренажере, приведенном в ПРИЛОЖЕНИИ и решить в выходных тестах по сопротивлению материалов Вам знакомые по постановке задачи позиции.

    Лекция № 5. Понятие о напряжениях и деформациях

    Как отмечалось выше, внутренние силы, действующие в некотором сечении со стороны отброшенной части тела, можно привести к главному вектору и главному моменту. Зафиксируем точку М в рассматриваемом сечении с единичным вектором нормали n . В окрестности этой точки выделим малую площадку F . Главный вектор внутренних сил, действующих на этой площадке, обозначим через P (рис. 1 а ). При уменьшении размеров площадки соответственно

    Рис.1. Композиция вектора напряжения.
    а) вектор полного напряжения б) вектор нормального и касательного напряжений

    уменьшаются главный вектор и главный момент внутренних сил, причем главный момент уменьшается в большей степени. В пределе при получим

    Аналогичный предел для главного момента равен нулю. Введенный таким образом векторр n называется вектором напряжений в точке. Этот вектор зависит не только от действующих на тело внешних сил и координат рассматриваемой точки, но и от ориентации в пространстве площадки F , характеризуемой вектором п . Совокупность всех векторов напряжений в точке М для всевозможных направлений вектора п определяет напряженное состояние в этой точке.

    В общем случае направление вектора напряженийр n не совпадает с направлением вектора нормали п . Проекция векторар n на направление вектора п называется нормальным напряжением , а проекция на плоскость, проходящую через точку М и ортогональную векторуn, - касательным напряжением (рис. 1 б ).

    Размерность напряжений равна отношению размерности силы к размерности площади. В международной системе единиц СИ напряжения измеряются в паскалях: 1 Па=1 Н/м 2 .

    При действии внешних сил наряду с возникновением напряжений происходит изменение объема тела и его формы, т. е. тело деформируется. При этом различают начальное (недеформированное) и конечное (деформированное) состояния тела.

    Отнесем недеформированное тело к декартовой системе координат Oxyz (рис. 2). Положение некоторой точки М в этой системе координат определяется радиус-вектором r(х, у, z). В деформированном состоянии точка М займет новое положение М / , характеризуемое радиус-вектором r " (х, у, z). Вектор u=r"-r называется вектором, перемещений точки М. Проекции вектора u на координатные оси определяют компоненты вектора перемещений и(х, у, z), v(х, у, z), w(х, у, z), равные разности декартовых координат точки тела после и до деформации.

    Перемещение, при котором взаимное расположение точек тела не меняется, не сопровождается деформациями. В этом случае говорят, что тело перемещается как жесткоецелое (линейное перемещение в пространстве или поворот относительно некоторой точки). С другой стороны, деформация, связанная с изменением формы тела и его объема, невозможна без перемещения его точек.

    Рис.2. Композиция вектора перемещения

    Деформации тела характеризуются изменением взаимного расположения точек тела до и после деформации. Рассмотрим, например, точку М и близкую к ней точку N, расстояние между которыми в недеформированном состоянии вдоль направления вектора s обозначим через (рис. 2). В деформированном состоянии точки М и N переместятся в новое положение (точки М" и N’ ), расстояние между которыми обозначим через s". Предел отношения

    называется относительной линейной деформацией в точке М в направлении вектора s, рис.3. Рассматривая три взаимно перпендикулярных направления, например, вдоль координатных осей Ох, Оу и Oz , получим три компоненты относительных линейных деформаций характеризующих изменение объема тела в процессе деформации. , связанных с поворотами отрезков

© fiorimebel.ru, 2024
Декор. Интерьер. Стиль. Ремонт. Дача и сад