Понятие модели и моделирования. Тесты для самоконтроля

18.03.2023

1. Определение модели. Классификация.

Исследование значения моделирования должно начинаться с определения понятия "модель".

Слово "модель" означает: мера, образ, способ и т.д. Его первоначальное значение было связано со строительным искусством, и почти во всех европейских языках оно употреблялось для обозначения образа или прообраза, или вещи, сходной в каком-то отношении с другой вещью. По мнению многих авторов, модель использовалась первоначально как изоморфная теория. После создания Декартом и Ферма аналитической геометрии моделью стало понятие подразумевающее теорию, которая обладает структурным подобием по отношению к другой теории. Две такие теории называются изоморфными, если одна из них выступает как модель другой, и наоборот.

С другой стороны, в таких науках о природе, как астрономия, механика, физика, химия, термин "модель" стал применяться для обозначения того, к чему даннная теория относится или может относиться, того, что она описывает. В А.Штофф отмечает, что здесь со словом "модель" связаны два близких, но несколько различных понятия. Под моделью в широком смысле понимают мысленно или практически созданную структуру, воспроизводящую часть действительности в упрощенной и наглядной форме. Таковы, в частности представления Анаксимандра о Земле как плоском цилиндре, вокруг которого вращаются наполненные огнем полые трубки с отверстиями. Модель в этом смысле выступает как некоторая идеализация, упрощение действительности, хотя сам характер и степень упрощения, вносимые моделью, могут со временем меняться.

В более узком смысле термин "модель" применяют тогда, когда хотят изобразить некоторую область явлений с помощью другой, более хорошо изученной, легче понимаемой. Так, физики 18 века пытались изобразить оптические и электрические явления посредством механических ("планетарная модель атома" - строение атома изображалось как строение солнечной системы).

Таким образом, в этих двух случаях под моделью понимается либо конкретный образ изучаемого объекта, в котором отображаются реальные или предполагаемые свойства, строение и т.д., либо другой объект, реально существующий наряду с изучаемым и сходный с ним в отношении некоторых определенных свойств или структурных особенностей. В этом смысле модель - не теория, а то, что описывается данной теорией - своеобразный предмет данной теории.

В научной литературе анализируется несколько понятий модели, но наиболее полное определение понятия "модель" дает В. А. Штофф в своей книге "Моделироваеие и философия". Под моделью понимается такая мысленно представляемая или материально реализуемая система, которая отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает нам новую информацию об этом объекте.

В литературе, посвященной философским аспектам моделирования представлены различные классификационные признаки, по которым выделены различные типы моделей. Остановимся на некоторых из них.

Так называются такие признаки, как:

  • способ построения (форма модели),
  • качественная специфика (содержание модели).

По способу построения модели бывают материальные и идеальные. Остановимся на группе материальных моделей. Несмотря на то, что эти модели созданы человеком, но они существуют объективно. Их назначение специфическое -воспроизведение структуры, характера, протекания, сущности изучаемого процесса:

  • отразить пространственные свойства
  • отразить динамику изучаемых процессов, зависимости и связи.

Материальные модели неразрывно связаны с объектами отношением аналогии В этом свете материальные модели делятся на мысленные и материальные.

Материальные модели неразрывно связаны с воображаемыми (даже, прежде, чем что-либо построить - сначала теоретическое представление, обоснование) эти модели остаются мысленными даже в том случае, если они воплощены в какой-либо материальной форме. Большинство этих моделей не претендует на материальное воплощение. По форме они могут быть:

а) Образные, построенные из чувтсвенно наглядных элементов.

б) Знаковые. В этих моделях элементы отноения и свойтсва моделиуемых явлений выражены при помощи определенных знаков.

в) Смешанные, сочетающие свойства и образных, и знаковых моделей.

Достоинства данной классификации в том, что она дает хорошую основу для анализа двух основных функций модели:

  • практической (в качестве орудия и средства научного эксперимента)
  • теоретической (в качестве специфического образа действительности, в котором содержатся элементы логического и чувственного, абстрактного и конкретного, общего и единичного).

Другая классификация есть у Б. А. Глинского в его книге "Моделирование как метод научного исследования", где наряду с обычным делением моделей по способу их реализации, они делятся и по характеру воспроизведения сторон оригинала:

  • субстанциональные
  • структурные
  • функциональные
  • смешанные

А.Н. Кочергин предлагает рассматривать и такие классификационные признаки, как: природа моделируемых явлений, степень точности, объем отображаемых свойств и др.

Дадим определение понятия моделирование. Моделирование - метод исследования объектов познания на их моделях; построение и изучение моделей реально существующих предметов и явлений (органических и неорганических систем, инженерных устройств, разнообразных процессов - физических, химических, биологических, социальных) и конструируемых объектов для определения либо улучшения их характеристик, рационализации способов их построения, управления и т.п. Моделирование может быть:

  • предметным (исследование объекта на модели основных геометрических,физических, динамических, функциональных его характкристик)
  • физическим (воспроизведение физических процессов)
  • предметно-математическим (исследование физического процесса путем опытного изучения каких-либо явлений иной физической природы,но описываемых те ми же математическими соотношениями, что и моделируемый процесс)
  • знаковым (расчетное моделирование, абстрактно-математическое)

2. Основные функции моделей.

Выясним, в чем специфика модели в качестве средства экспериментального исследования в сравнении с другими экспериментальными средствами. Рассмотрение материальных моделей в качестве средств, орудий экспериментальной деятельности вызывает потребность выяснить, чем отличаются те эксперименты, в которых используются модели, от тех, где они не применяются. Возникает вопрос о той специфике, которую вносит в эксперимент применение в нем модели.

Под экспериментом понимается вид деятельности, предпринимаемой в целях научного познания, открытия объективных закономерностей и состоящий в воздействии на изучаемый объект(процесс) посредством специальных инструментов и приборов.

Существует особая форма эксперимента, для которой характерно использование действующих материальных моделей в качестве специальных средств экспериментального исследования. Такая форма называется модельным экспериментом.

В отличии от обычного эксперимента, где средства эксперимента так или иначе взаимодействуют с объектом исследования, здесь взаимодействия нет, так как экспериментируют не с самим объектом, а с его заместителем При этом объект-заместитель и экспериментальная установка объединяются, сливаются в действующей модели в одно целое. Таким образом, обнаруживается двоякая роль, которую модель выполняет в эксперименте: она одновременно является и объектом изучения и экспериментальным средством.

Для модельного эксперимента, по мнению исследователей характерны следующие основные операции:

  • переход от натурального объекта к модели - построение модели (моделирование в собственном смысле слова).
  • экспериментальное исследование модели.
  • переход от модели к натуральному объекту, состоящий в перенесении результатов, полученных при исследовании, на этот объект.

Модель входит в эксперимент, не только замещая объект исследования, но и замещая условия, в которых изучается некоторый объект обычного эксперимента.

Обычный эксперимент предполагает наличие теоретического момента лишь в начальный момент исследования - выдвижение гипотезы, ее оценку и т.д. Теоретические соображения, связанные с конструированием установки, а также на завершающей стадии - обсуждение и интерпретация полученных данных, их обобщение; в модельном эксперименте необходимо также обосновать отношение подобия между моделью и натуральным объектом и возможность экстраполировать на этот объект полученные данные.

3. Моделирование и проблема истины.

Интересен вопрос о том, какую роль играет само моделирование, то есть построение моделей, их изучение и проверка в процессе доказательства истинности и поисков истинного знания.

Что же следует понимать под истинностью модели? Если истинность вообще -соотношение наших знаний объективной действительности, то истинность модели означает соответствие модели объекту, а ложность модели -отсутствие такого соответствия. Такое определение является необходимым, но недостаточным. Требуются дальнейшие уточнения, основанные на принятие во внимание условий, на основе которых модель того или иного типа воспроизводит изучаемое явление. Например, условия сходства модели и объекта в математическом моделировании, основанном на физических аналогиях, предполагающих при различии физических процессов в модели и объекте тождество математической формы, в которой выражаются их общие закономерности, являются более общими, более абстрактными.

Таким образом, при построении тех или иных моделей всегда сознательно отвлекаются от некоторых сторон, свойств и даже отношений, в силу чего, заведомо допускается несохранение сходства между моделью и оригиналом по ряду параметров, которые вообще не входят в формулирование условий сходства Так планетарная модель атома Резерфорда оказалась истинной в рамках(и только в этих рамках) исследования электронной структуры атома, а модель Дж.Дж. Томпсона оказалась ложной, так как ее структура не совпадала с электронной структурой. Истинность - свойство знания, а объекты материального мира не истинны, не ложны, просто существуют. Можно ли говорить об истинности материальных моделей, если они - вещи, существующие объективно, материально? Этот вопрос связан с вопросом: на каком основании можно считать материальную модель гносеологическим образом? В модели реализованы двоякого рода знания:

  • знание самой модели (ее структуры, процессов, функций) как системы, созданной с целью воспроизведения некоторого объекта.
  • теоретические знания, посредством которых модель была построена

Имея в виду именно теоретические соображения и методы, лежащие в основе построения модели, можно ставить вопросы о том, на сколько верно данная модель отражает объект и насколько полно она его отражает. В таком случае возникает мысль о сравнимости любого созданного человеком предмета с аналогичными природными объектами и об истинности этого предмета. Но это имеет смысл лишь в том случае, если подобные предметы создаются со специальной целью изобразить, скопировать, воспроизвести определенные черты естественного предмета.

Таким образом, можно говорить о том, истинность присуща материальным моделям:

  • в силу связи их с определенными знаниями;
  • в силу наличия (или отсутствия) изоморфизма ее структуры со структурой моделируемого процесса или явления,
  • в силу отношения модели к моделируемому объекту, которое делает ее частью познавательного процесса и позволяет решать определенные познавательные задачи.

Важнейший аспект, связанный с ролью моделирования в установлении истинности той или иной формы теоретического знания. Здесь модель можно рассматривать не только как орудие проверки того, действительно ли существуют такие связи, отношения, структуры, закономерности, которые формулируются в данной теории и выполняются в модели Успешная работа модели есть практическое доказательство истинности теории, то есть это часть экспериментального доказательства истинности этой теории

4.Особенности кибернетического моделирования.

В современном научном знании весьма широко распространена тенденция построения кибернетических моделей объектов самых различных классов. Кибернетический этап в исследовании сложных систем ознаменован существенным преобразованием "языка науки", характеризуется возможностью выражения основных особенностей этих систем в терминах теории информации и управления. Это сделало доступным их математический анализ. Кибернетическое моделирование используется и как общее эвристическое средство, и как искусственный организм, и как система-заменитель, и в функции демонстрационной. Использование кибернетической теории связи и управления для построения моделей в соответствующих областях основывается на максимальной общности ее законов и принципов: для объектов живой природы, социальных систем и технических систем.

Характеризуя процесс кибернетического моделирования, обращают внимание на следующие обстоятельства. Модель, будучи аналогом исследуемого явления, никогда не может достигнуть степени сложности последнего. При построении модели прибегают к известным упрощениям, цель которых -стремление отобразить не весь объект, а с максимальной полнотой охарактеризовать некоторый его "срез". Задача заключается в том, чтобы путем введения ряда упрощающих допущений выделить важные для исследования свойства.

Создавая кибернетические модели, выделяют информационно-управленческие свойства. Все иные стороны этого объекта остаются вне рассмотрения На чрезвычайную важность поисков путей исследования сложных систем методом наложения определенных упрощающих предположений Р. Эшби указывает, что в прошлом наблюдалось некоторое пренебрежение к упрощениям. Однако мы, занимающиеся исследованием сложных систем, не можем себе позволить такого пренебрежения. Исследователи сложных систем должны заниматься упрощенными формами, ибо всеобъемлющие исследования бывают зачастую совершенно невозможны. Анализируя процесс приложения кибернетического моделирования в различных областях знания, можно заметить расширение сферы применения кибернетических моделей: использование в науках о мозге, в социологии, в искусстве, в ряде технических наук. В частности, в современной измерительной технике нашли приложение информационные модели.

Использование ЭВМ в моделировании деятельности мозга позволяет отражать процессы в их динамике, но у этого метода в данном приложении есть свои сильные и слабые стороны. Наряду с общими чертами, присущими мозгу и моделирующему его работу устройству, такими, как:

  • материальность
  • закономерный характер всех процессов
  • общность некоторых форм движения метерии
  • отражение
  • принадлежность к классу самоорганизующихся динамических систем, в которых заложены:

а) принцип обратной связи

б) структурно-функциональная аналогия

в) способность накапливать информацию есть существенные отличия, такие как:

1. моделирующему устройству присущи лишь низшие формы движения -физическое, химическое, а мозгу кроме того - социальное, биологическое;

2. процесс отражения в мозге человека проявляется в субъективно-сознательном восприятии внешних воздействий. Мышление возникает в результате взаимодействия субъекта познания с объектом в условиях социальной среды;

3. в языке человека и машины. Язык человека носит понятийный характер.

Свойства предметов и явлений обобщаются с помощью языка. Моделирующее устройство имеет дело с электрическими импульсами, которые соотнесены человеком с буквами, числами. Таким образом, машина "говорит" не на понятийном языке, а на системе правил, которая по своему характеру является формальной, не имеющей предметного содержания.

Использование математических методов при анализе процессов отражательной деятельности мозга стало возможным благодаря некоторым допущениям, сформулированным Маккаллоком и Питтсом. В их основе - абстрагирование от свойств естественного нейрона, от характера обмена веществ и т.д. - нейрон рассматривается с чисто функциональной стороны. Существующие модели, имитирующие деятельность мозга (Ферли, Кларка, Неймана, Комбертсона, Уолтера, Джоржа, Шеннона, Аттли, Берля и др.) отвлечены от качественной специфики естественных нейронов. Однако, с точки зрения изучения функциональной стороны деятельности мозга это оказывается несущественным

Успехи, полученные при изучении деятельности мозга в информационном аспекте на основе моделирования, по мнению Н.М.Амосова, создали иллюзию, что проблема закономерностей функционирования мозга может быть решена лишь с помощью этого метода. Однако, по его же мнению, любая модель связана с упрощением, в частности:

  • не все функции и специфические свойства учитываются,
  • отвлечение от социального, нейродинамического характера.

Таким образом, делается вывод о критическом отношении к данному методу. Нельзя переоценивать его возможности, но вместе с тем, необходимо его широкое применение в данной области с учетом разумных ограничений.

Итак, моделирование является достаточно мощным инструментом в познании окружающего мира, ведь невозможно наблюдать какое-нибудь явление тогда когда это необходимо человеку, а моделирование этого процесса пусть и не полно, но отражает его сущность и дает возможность при исследовании явления обратить внимание на более мелкие детали процесса или те которые не удалось отобразить в модели. В добавок к этому человек мысленно тоже у себя в голове строит модель процесса которого он исследует.

КЛАССИФИКАЦИЯ МОДЕЛЕЙ Признаки классификаций моделей: 1) по области использования; 2) по фактору времени; 3) по отрасли знаний; 4) по форме представления 1) Классификация моделей по области использования: Учебные модели – используются при обучении; Опытные – это уменьшенные или увеличенные копии проектируемого объекта. Используют для исследования и прогнозирования его будущих характеристик Научно ­ технические ­ создаются для исследования процессов и явлений Игровые – репетиция поведения объекта в различных условиях Имитационные – отражение реальности в той или иной степени (это метод проб и ошибок) 2) Классификация моделей по фактору времени: Статические – модели, описывающие состояние системы в определенный момент времени (единовременный срез информации по данному объекту). Примеры моделей: классификация животных…., строение молекул, список посаженных деревьев, отчет об обследовании состояния зубов в школе и тд. Динамические – модели, описывающие процессы изменения и развития системы (изменения объекта во времени). Примеры: описание движения тел, развития организмов, процесс химических реакций. 3) Классификация моделей по отрасли знаний ­ это классификация по отрасли деятельности человека: Математические, биологические, химические, социальные, экономические, исторические и тд 4) Классификация моделей по форме представления:

Материальные – это предметные (физические) модели. Они всегда имеют реальное воплощение. Отражают внешнее свойство и внутреннее устройство исходных объектов, суть процессов и явлений объекта­оригинала. Это экспериментальный метод познания окружающей среды.Примеры: детские игрушки, скелет человека, чучело, макет солнечной системы, школьные пособия, физические и химические опыты Абстрактные (нематериальные) – не имеют реального воплощения. Их основу составляет информация. это теоретический метод познания окружающей среды. По признаку реализации они бывают: мысленные и вербальные; информационные Мысленные модели формируются в воображении человека в результате раздумий, умозаключений, иногда в виде некоторого образа. Это модель сопутствует сознательной деятельности человека. Вербальные – мысленные модели выраженные в разговорной форме. Используется для передачи мыслей Информационные модели – целенаправленно отобранная информация об объекте, которая отражает наиболее существенные для исследователя свойств этого объекта. Типы информационных моделей: – объекты и их свойства представлены в виде списка, а их значения Табличные размещаются в ячейках прямоугольной формы. Перечень однотипных объектов размещен в первом столбце (или строке), а значения их свойств размещаются в следующих столбцах (или строках) Иерархические – объекты распределены по уровням. Каждый элемент высокого уровня состоит из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня – применяют для отражения систем, в которых связи между элементами имеют Сетевые сложную структуру По степени формализации информационные модели бывают образно­знаковые и знаковые. Напримеры: Образно­знаковые модели: Геометрические (рисунок, пиктограмма, чертеж, карта, план, объемное изображение) Структурные (таблица, граф, схема, диаграмма)

Словесные (описание естественными языками) Алгоритмические (нумерованный список, пошаговое перечисление, блок­схема) Знаковые модели: Математические – представлены матем.формулами, отображающими связь параметров Специальные – представлены на спец. языках (ноты, хим.формулы) Алгоритмические – программы Признаки классификаций моделей:Классификация моделей по области использования Классификация моделей Существуют разные способы классификации моделей:  по классам задач;  по области использования;  по способу представления и др. Из классов задач, по которым разделяют модели, можно назвать: анализ, синтез, конструирование, проектирование, управление, утилизация и т. п. По области использования модели разделяют:  учебные – наглядные пособия, различные тренажеры, обучающие программы;  опытные – копии объектов, которые используются для исследования объекта и прогнозирования его характеристик в будущем;  научно­технические, используемые для исследования процессов и явлений (различные стенды, моделирующие физические и природные явления);  игровые – военные, экономические, спортивные и деловые игры;  имитационные, которые моделируют с той или иной точностью работу объекта в различных условиях и, как правило, с учетом случайных факторов. Алгоритм (компьютерная программа), реализующий имитационную модель, воспроизводит процесс функционирования системы во времени, причем имитируются элементарные события, составляющие процесс, с сохранением их логической структуры и последовательностью протекания во времени. Это позволяет по исходным данным получить сведения о состоянии процесса в

определенные моменты времени, дающие возможность оценить характеристики системы. Примером имитационной модели может служить программа расчета аварийного переходного процесса в электроэнергетической системе, когда во время протекания процесса имитируются события срабатывания различной автоматики и коммутации оборудования системы. Способ представления модели – наиболее важный признак классификации моделей. Все модели можно разделить на две группы: материальные и идеальные (информационные). В свою очередь физические модели разделяют на физические, аналоговые и геометрически подобные (макеты) (рис. 1.3). Рис. 1.3. Классификация моделей по способу представления Физические модели имеют ту же природу, что и моделируемые объекты. Это, как правило, уменьшенные копии объектов, сохраняющие его основные физические свойства. Так, например, работу гидравлической турбины можно исследовать на лабораторной установке, воспроизводящей в масштабе настоящую турбину. Исследование работы генератора электростанции также можно выполнить на малой электрической машине переменного тока. Модели автомобилей, судов, самолетов, луноходов и других машин, которые являются физическими моделями, помогают инженерам исследовать механические, тепловые, электрические, магнитные, химические и другие свойства различных машин. Иногда исследования проводятся на моделях, которые имеют отличную от исходного объекта физическую природу. Так, механические свойства движения вращающегося объекта (вала) можно исследовать на электрической модели, и, наоборот, токи и напряжения электрической цепи можно моделировать с помощью сил и скоростей элементов механической системы. Такие модели называют аналоговыми. Получило развитие направление моделирования с помощью специальных аналоговых вычислительных машин (АВМ), в отличие от цифровых вычислительных машин (ЦВМ). Многие физические и аналоговые модели исследуются в динамике, т. е. изменении

их параметров и свойств во времени. Моделирование предусматривает масштабирование не только по переменным модели, но и по времени; таким образом, процессы, протекающие в моделях, воспроизводятся в замедленном или ускоренном движении. Геометрически подобные модели – это макеты зданий, сооружений и природных объектов. Они изготавливаются для решения учебных, архитектурных, экологических и инженерных задач. Идеальные модели носят информационный характер. Они возникают и строятся в сознании людей и используются как любая информация. Можно сказать, что информация – это модель окружающего нас мира. Идеальные модели в зависимости от средств их изображения, передачи, хранения и использования подразделяются на знаковые и вербальные. Знаковые модели используют какой­либо формализованный язык – литературный, математический, алгоритмический и др. Вербальными можно считать образные модели в сознании людей и передаваемые ими посредством разговорной речи. Знаковые и вербальные модели взаимосвязаны. Мысленный образ, родившийся в мозгу человека, может быть облечен в знаковую форму, и, наоборот, знаковая модель позволяет сформировать в сознании верный мысленный образ. Знаковые модели, записанные на каком­либо носителе (бумажном, магнитном, электрическом, оптическом и др.), передаются между людьми, обрабатываются на компьютерах и сохраняются для следующих поколений. В зависимости от этого можно выделить несколько видов знаковых моделей: дескриптивные, имитационные, алгоритмические, математические, базы данных и знаний. Математическое представление об объекте должно согласовываться с возможностью дальнейшего анализа и исследования объекта по его математической модели. Каждый объект и система могут моделироваться на разных иерархических уровнях восприятия человеком окружающего мира. Принято разделять моделирование технических объектов по трем уровням: микро­, макро­ и метауровень. На каждом из этих уровней применимы свои классы моделей, различающиеся главным образом представлением пространства и времени. Описание моделей разных иерархических уровней дано в разд. 1.6–1.8. Классификация моделей

При построении математических моделей процессов функционирования систем существуют следующие основные подходы: непрерывно­детерминированный (например, дифференциальные уравнения, уравнения состояния); дискретно­детерминированный (конечные автоматы); дискретно­стохастический (вероятностные автоматы); непрерывно­ стохастический (системы массового обслуживания); обобщенный или универсальный (агрегативные системы). Классификация моделей и видов моделирования объектов и систем в соответствии с теорией подобия должна выделить в них наиболее общие признаки и свойства реальных систем. Ниже приведена одна из возможных классификаций. Признаки классификации Виды математических моделей 1. Принадлежность к иерархическому уровню 2. Характер взаимоотношений со средой 3. Характер отображаемых свойств объекта 4. Способ представления свойств объекта 5. Способ получения модели 6. Причинная обусловленность  Модели микроуровня  Модели макроуровня  Модели метауровня  Открытые непрерывный обмен)  Закрытые (слабая связь)  Структурные  Функциональные  Аналитические  Алгоритмические  Имитационные  Теоретические  Эмпирические  Детерминированные  Вероятностные

7. По отношению к времени 8. По типу уравнений 9. По множеству значений переменных 10. По назначению  Динамические  Статические  Линейные  Нелинейные  Непрерывные  Дискретные  Дискретно­непрерывные  Технические  Экономические  Социальные и т.д. Моделирование в целом включает в себя ряд этапов, базирующихся на системном подходе: 1. Содержательная постановка задачи: выработка общиго подхода к исследуемой проблеме; определение подзадач; определение основной цели и путей ее достижения. 2. Изучение и сбор информации об объекте­оригинале: анализ или подбор подходящих гипотез, аналогий, теорий; учет опытных данных, наблюдений и т.д.; определение входных и выходных переменных, связей; принятие упрощающих предположений. 3. Формализация: принимаются условные обозначения и с их помощью описываются связи между элементами объекта в виде математических выражений. Намечается переход к количественному анализу. 4. Выбор метода решения. Для поставленной математической задачи обосновывается метод ее решения с учетом знаний и предпочтений пользователя и разработчика. При проектировании приходится решать как линейные, так и нелинейные задачи, использовать ручные и машинные методы проектирования, расчета и исследований, 5. Реализация модели. Принимается критерий оценки эффективности модели, разрабатывается алгоритм, пишется и отлаживается программа, чтобы осуществить системный анализ и синтез.

6. Анализ полученных результатов. Сопоставляется предполагаемое и полученное решение, проводится оценка адекватности и погрешности моделирования. Процесс моделирования является итеративным. В случае неудовлетворительных результатов, полученных на этапах 5 или 6,осуществляется возврат к одному из ранних этапов, который мог привести к разработке неудачной модели. Уточнение модели происходит до тех пор, пока не будут получены приемлемые результаты. Таким образом, после прохождения этих этапов наиболее полно могут быть выполнены требования, предъявляемые к моделям:  Универсальность - характеризует полноту отображения моделью изучаемых свойств реального объекта;  Адекватность - способность отражать нужные свойства объекта с погрешностью не выше допустимой;  Точность - оценивается степенью совпадения значений характеристик реального объекта со значениями этих характеристик, полученных с помощью моделей;  Экономичность - определяется затратами ресурсов ЭВМ (памяти и времени на ее реализацию и эксплуатацию). Качество моделирования может быть оценено характеристикой его потребительских свойств:  эффективность использования его по назначению (цели);  ресурсоемкость;  стоимость. Эти характеристики (показатели) в развернутом виде представлены на рис.1.1 . Математический подход к моделированию имеет ряд недостатков:  низкая адекватность математической модели реальному объекту;  проблемы, связанные с решаемостью математических моделей из­за наличия в них разрывных функций;  непригодность математических моделей для большинства объектов с переменной структурой;

 приближенные методы реализаций моделей с переменными коэффициентами требуют значительных затрат и не обладают достаточной точностью решения. В настоящее время имитационное моделирование в основном реализуется на ЦВМ. Исходное математическое описание любой динамической системы представляет собой совокупность дифференциальных, алгебраических, логических, разностных уравнений, описывающих физические процессы в отдельных функциональных элементах системы. Классификация моделей В учебнике Информационная культура. Кодирование информации. Информационные модели. (9­10 класс) авторы А.Г.Кушнеренко, А.Г.Леонов и др. классификации моделей по каким либо признакам не производится. Авторы предлагают построить модели (зрительный зал, расписание, модели геометрической информации и пр. Видимо, по их мнению классификация моделей в школе не требуется. Хочу сразу не согласиться с этим. Я думаю, что классификация моделей позволяет ученикам видеть модели объектов и процессов в обыденной жизни и пытаться осмысленно строить и использовать модели, для решения широкого спектра вопросов. В пособии для учителей Земля информатика А.Г.Гейна вопросы классификации моделей не выделены в отдельную главу, но в главе 3 "Самостоятельная жизнь моделей" после рассмотрения нескольких моделей, автор поясняет, что каждая из этих моделей относится к своему классу В учебнике Информатика 9 класс под редакцией Н.В.Макаровой в процессе изучения темы "Классификация моделей " ребята узнают по каким признакам можно классифицировать модели; что такое информационная модель и чем она отличается от материальной; виды информационных моделей по форме представления и по способу реализации. Вот признаки, которые автор классифицирует модели: область использования, учет в модели временного фактора, отрасли знаний, способа представления моделей. В задачнике­практикуме под редакцией И.Г.Семакина и Е.Г.Хеннера в главе, посвященной компьютерному моделированию вопросу классификации уделяется немного места. Авторы указывают, что в прикладных областях человеческой деятельности различаются следующие виды абстрактных моделей. Но далее рассматривается несколько направлений компьютерного моделирования на примерах конкретных задач: задачи

динамическоко моделирования, задачи статического и имитационного моделирования, моделирование знаний. При этом перед разбором конкретных задач дается краткое определение соответствующего класса задач. В пособии "Методика преподавания информатики" А.И.Бочкина вопросам классификации моделей отводится большое внимание. В приведенных фрагментах мной сохранен стиль соответствующих учебников. Классификация моделей приведенная в задачнике Семакина В прикладных областях человеческой деятельности различаются следующие виды абстрактных моделей. 1. Вербальные (текстовые модели). Эти модели используют последовательность предложений на формализованных диалектах естественного языка для описания той или иной области действительности (примерами такого рода моделей является милицейский протокол, правила дорожного движения и пр.) 2. Математические модели, выражающие существенные черты объекта или процесса языком уравнений и других математических средств. Они традиционны для теоретической физики, механики, химии, биологии и ряда других, в том числе гуманитарных и социальных наук. 3. Информационные модели ­ класс знаковых моделей, описывающих информационные процессы (возникновение, передачу и использование информации в системах самой разнообразной природы. Возврат в начало Классификация с учетом фактора времени и области использования (Макарова Н.А.) Статическая модель ­ это как бы одномоментный срез информации по объекту (результат одного обследования) Динамическая модель­позволяет увидеть изменения объекта во времени(Карточка в

поликлинике) Можно классифицировать модели и по тому, к какой области знаний они принадлежат(биологические,исторические, экологические и т.п.) Возврат в начало Классификация по области использования (Макарова Н.А.) Учебные­наглядные пособия, тренажеры,обучающие программы Опытные модели­уменьшенные копии (автомобиль в аэродинамической трубе) Научно­технические­синхрофазотрон, стенд для проверки электронной аппаратуры Игровые­экономические, спортивные, деловые игры Имитационные­не просто отражают реальность, но имитируют ее(на мышах испытываеется лекарство, в школах проводятся эксперементы и т.п. .Такой метод моделирования называетсяметодом проб и ошибок Возврат в начало Классификация по способу представления Макарова Н.А.) Материальные модели­иначе можно назвать предметными. Они воспринимают геометрические и физические свойства оригинала и всегда имеют реальное воплощение Информационные модели­нельзя потрогать или увидеть. Они строятся только на информации.Информационная модель совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром. Вербальная модель ­ информационная модель в мысленной или разговорной форме. Знаковая модель­информационная модель выраженная знаками,т.е. средствами любого

формального языка. Компьютерная модель ­модель, реализованная средствами программной среды. Возврат в начало Классификация моделей, приведенная в книге "Земля Информатика" (Гейн А.Г.)) "...вот нехитрая на первый взгляд задача: сколько потребуется времени, чтобы пересечь пустыню Каракумы? Ответ,разумеется зависит от способа передвижения. Если путешествоватьна верблюдах, то потребуется один срок, другой­если ехать на автомобиле, третий ­ если лететь самолетом. А самое главное ­ для планирования путешествия требуются разные модели. Для первого случая требуемую модель можно найти в мемуарах знаменитых исследователей пустынь: ведь здесь не обойтись без информации об оазисах и верблюжьих тропах. Во втором случае незаменимая информация, содержащаяся в атласе автомобильных дорог. В третьем ­ можно воспользоваться расписанием самолетных рейсов. Отличаются эти три модели ­ мемуары, атлас и расписание и характером предьявления информации. В первом случае модель представлена словесным описанием информации (описательная модель), во втором­ как бы фотографией с натуры (натурная модель), в третьем ­ таблицей содержащей условные обозначения: время вылета и прилета, день недели, цена билета (так называемая знаковая модель) Впрочем это деление весьма условно­ в мемуарах могут встретиться карты и схемы (элементы натурной модели), на картах имеются условные обозначения (элементы знаковой модели), в расписании приводится расшифровка условных обозначений (элементы описательной модели). Так что эта классификация моделей... на наш взгля малопродуктивна" На мой взгляд этот фрагмент демонстрирует общий для всех книг Гейна описательный (замечательный язык и стиль изложения) и как бы, сократовский стиль обучения (Все считают что это вот так. Я совершенно согласен с вами, но если приглядеться, то...). В таких книгах достаточно сложно найти четкую систему определений (она и не предполагается автором). В учебнике под редакцией Н.А. Макаровой демонстрируется другой подход ­ определения понятий четко выделены и несколько статичны. Возврат в начало Классификация моделей приведенная в пособии А.И.Бочкина Способов классификации необычно много.Приведем лишь некоторые, наиболее известные

основания и признаки:дискретность и непрерывность,матричные и скалярные модели, статические и динамические модели, аналитические и информационные модели, предметные и образно­знаковые модели, масштабные и немасштабные... Каждый признак даетопределенное знание о свойствах и модели, и моделируемой реальности. Признак может служить подсказкой о способе выполненного или предстоящего моделирования. Дискретность и непрерывностьДискретность­ характерный признак именно компьютерных моделей.Ведь компьютер может находиться в конечном, хотя и очень большом количестве состояний. Поэтому даже если объект непрерывен (время), в модели он будет изменяться скачками. Можно считать непрерывность признаком моделей некомпьютерного типа. Случайность и детерминированность. Неопределенность, случайность изначально противостоит компьютерному миру: Запущенный вновь алгоритм должен повториться и дать те же результаты. Но для имитации случайных процессов используют датчики псевдослучайных чисел. Введение случайности в детерминированные задачи приводит к мощным и интересным моделям (Вычисление площади методом случайных бросаний). Матричность ­ скалярность. Наличие параметров у матричной модели говорит о ее большей сложности и, возможно, точности по сравнению со скалярной. Например, если не выделить в населении страны все возрастные группы, рассматривая его изменение как целое, получим скалярную модель (например модель Мальтуса), если выделить, ­ матричную (половозрастную). Именно матричная модель позволила объяснить колебания рождаемости после войны. Статичность динамичность. Эти свойства модели обычно предопределяются свойствами реального объекта. Здесь нет свободы выбора. Просто статическая модель может быть шагом кдинамической, либо часть переменных модели может считаться пока неизменной. Например, спутник движется вокруг Земли, на его движение влияет Луна. Если считать Луну неподвижной за время оборота спутника, получим более простую модель. Аналитические модели. Описание процессов аналитически, формулами и уравнениями. Но при попытке построить график удобнее иметь таблицы значений функции и аргументов. Имитационные модели. Имитационные модели появились давно в виде масштабных копий кораблей, мостов и пр. появились давно, но в связи с компьютерами рассматриваются недавно. Зная как связаны элементы модели аналитически и логически, проще не решать систему неких соотношений и уравнений, а отобразить реальную систему в память компьютера, с учетом связей между элементами памяти. Информационные модели. Информационные модели принято противополагать математическим, точнее алгоритмическим. Здесь важно соотношение объемов данные/алгоритмы. Если данных больше или они важнее имеем информационную модель,

иначе ­ математичеескую. Предметные модели. Это прежде всего детская модель ­ игрушка. Образно­знаковые модели. Это прежде всего модель в уме человека: образная, если преобладают графические образы, и знаковая, если больше слов или (и) чисел. Образно­ знаковые модели строятся на компьютере. Масштабные модели. К масштабным моделям те из предметных или образных моделей, которые повторяют форму объекта (карта). Возврат в начало

Тест по теме " Моделирование и формализация"

1. Что называется атрибутом объекта?


  1. Представление объекта реального мира с помощью некоторого набора его характеристик, существенных для решения данной информационной задачи.

  2. Абстракция предметов реального мира, объединяемых общими характеристиками и поведением.

  3. Связь между объектом и его характеристиками.

  4. Каждая отдельная характеристика, общая для всех возможных экземпляров
2. Выбор вида модели зависит от:

  1. Физической природы объекта.

  2. Предназначения объекта.

  3. Цели исследования объекта.

  4. Информационной сущности объекта.
^ 3. Что такое информационная модель объекта?

  1. Материальный или мысленно представляемый объект, замещающий в процессе исследования исходный объект с сохранением наиболее существенных свойств, важных для данного исследования.

  2. Формализованное описание объекта в виде текста на некотором языке кодирования, содержащем всю необходимую информацию об объекте.

  3. Программное средство, реализующее математическую модель.

  4. Описание атрибутов объектов, существенных для рассматриваемой задачи и связей между ними.
^ 4. Укажите классификацию моделей в узком смысле слова:

  1. Натурные, абстрактные, вербальные.

  2. Абстрактные, математические, информационные.

  3. Математические, компьютерные, информационные.

  4. Вербальные, математические, информационные
^ 5. Целью создания информационной модели является:

  1. Обработка данных об объекте реального мира с учетом связи между объектами.

  2. Усложнение модели, учитывая дополнительные факторы, которые были ранее проинформированы.

  3. Исследование объектов, основанное на компьютерном экспериментировании с их математическими моделями.

  4. Представление объекта в виде текста на некотором искусственном языке, доступном компьютерной обработке.
^ 6. В основе информационного моделирования лежит:

  1. Обозначение и наименование объекта.

  2. Замена реального объекта соответствующей ему моделью.

  3. Нахождение аналитического решения, которое дает информацию об исследуемом объекте.

  4. Описание процессов возникновения, обработки и передачи информации в изучаемой системе объектов.
^ 7. Формализация - это

  1. Этап перехода от содержательного описания связей между выделенными признаками объекта к описанию, использующему некоторый язык кодирования.

  2. Замена реального предмета знаком или совокупностью знаков.

  3. Переход от нечетких задач, возникающих в реальной действительности, к формальным информационным моделям.

  4. Выделение существенной информации об объекте.
^ 8. Информационной технологией называется

  1. Процесс, определяемый совокупностью средств и методов обработки, изготовления, изменения состояния, свойств, формы материала.

  2. Изменение исходного состояния объекта.

  3. Процесс, использующий совокупность средств и методов обработки и передачи первичной информации нового качества о состоянии объекта, процесса или явления.

  4. Совокупность определенных действий, направленных на достижение поставленной цели.
^ 9. Что называют имитационным моделированием?


  1. Современная технология исследования объектов.

  2. Изучение физических явлений и процессов с помощью компьютерных моделей.

  3. Реализация математической модели в виде программного средства.
^ 10. Что такое компьютерная информационная модель?

  1. Представление объекта в виде теста на некотором искусственном языке, доступном компьютерной обработке.

  2. Совокупность информации, характеризующая свойства и состояние объекта, а также взаимосвязь с внешним миром.

  3. Модель в мысленной или разговорной форме, реализованная на компьютере.

  4. Метод исследования, связанный с вычислительной техникой.
11. Компьютерный эксперимент состоит из последовательности этапов:

  1. Выбор численного метода - разработка алгоритма - исполнение программы на компьютере.

  2. Построение математической модели - выбор численного метода - разработка алгоритма - исполнение программы на компьютере, анализ решения.

  3. Разработка модели - разработка алгоритма - реализация алгоритма в виде программного средства.

  4. Построение математической модели - разработка алгоритма - исполнение программы на компьютере, анализ решения.

При использовании метода моделирования свойства и поведение объекта изучают путем применения вспомогательной системы – модели, находящейся в определенном объективном соответствии с исследуемым объектом.

Под объектом исследования понимается либо некоторая система, элементы которой в процессе достижения конечной цели реализуют один или несколько процессов, либо некоторый процесс, реализуемый элементами одной или нескольких систем. В связи с этим в дельнейшем тексте термины «модель объекта», «модель системы», «модель процесса» следует воспринимать как эквивалентные.

Представления о тех или иных свойствах объектов, их взаимосвязях формируются исследователем в виде описания этих объектов на обычном языке, в виде рисунков, графиков, формул или реализуются в виде макетов и других устройств. Подобные способы описания обобщаются в едином понятии – модель , а построение и изучение моделей называется моделированием .

Заслуживает предпочтения следующее определение: модель – объект любой природы, который создается исследователем с целью получения новых знаний об объекте-оригинале и отражает только существенные (с точки зрения разработчика) свойства оригинала.

Модель считается адекватной объекту-оригиналу, если она с достаточной степенью приближения на уровне понимания моделируемого процесса исследователем отражает закономерности процесса функционирования реальной системы во внешней среде.

Модели позволяют вынести упрощенное представление о системе и получить некоторые результаты намного проще, чем при изучении реального объекта. Более того, гипотетически модели объекта могут быть исследованы и изучены перед тем, как объект будет создан.

В практике исследования производственно-экономических объектов модели могут применяться для самых разных целей, что вызывает использование моделей различных классов. Построение одной-единственной математической модели для сложной производственной системы практически не представляется возможным без разработки вспомогательных моделей. Поэтому, как правило, при создании конечной математической модели исследуемого объекта строят частные вспомогательные модели, отражающие ту или иную информацию об объекте, имеющуюся у разработчика на данном этапе построения модели.

В основе моделирования лежит теория подобия , которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта.

Классификационные признаки. В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные. В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем. Классификация видов моделирования систем S приведена на рис.1.1.

В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, т.е. процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, т.е. набор однородных реализаций. Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для тех случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

В зависимости от формы представления объекта (системы S ) можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического.

Рис. 1.1. Классификация видов моделирования систем

При наглядном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте. В основу гипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей.

Аналоговое моделирование основывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.

Существенное место при мысленном наглядном моделировании занимает макетирование .Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдельных понятий, т.е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий – составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.

В основе языкового моделирования лежит некоторый тезаурус. Последний образует из наборов входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус – словарь, который очищен от неоднозначности, т.е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков и символов.

Математическое моделирование. Для исследования характеристик процесса функционирования любой системы S математическими методами, включая и машинные, должна быть проведена формализация этого процесса, т.е. построена математическая модель.

Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое, имитационное и комбинированное.

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегродифференциальных, конечно-разностных и т.п.) или логических условий. Аналитическая модель может быть исследована следующими методами: а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик; б) численным, когда, не умея решать уравнения в общем виде, стремятся получить числовые результаты при конкретных начальных данных; в) качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения).

Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы S . Однако такие зависимости удается получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности, которые часто бывают непреодолимыми. Поэтому, желая использовать аналитический метод, в этом случае идут на существенное упрощение первоначальной модели, чтобы иметь возможность изучить хотя бы общие свойства системы. Такое исследование на упрощенной модели аналитическим методом помогает получить ориентировочные результаты для определения более точных оценок другими методами. Численный метод позволяет исследовать по сравнению с аналитическим методом более широкий класс систем, но при этом полученные решения носят частный характер. Численный метод особенно эффективен при использовании ЭВМ.

В отдельных случаях исследования системы могут удовлетворить и те выводы, которые можно сделать при использовании качественного метода анализа математической модели. Такие качественные методы широко используются, например, в теории автоматического управления для оценки эффективности различных вариантов систем управления.

В настоящее время распространены методы машинной реализации исследования характеристик процесса функционирования больших систем. Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм.

При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы S во времени, причем имитируются элементарные явления, составляющие процесс с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системы S.

Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование – наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапах ее проектирования.

Когда результаты, полученные при воспроизведении на имитационной модели процесса функционирования системы S, Являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведение с последующей статистической обработкой информации и целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования. Первоначально был разработан метод статистических испытаний, представляющий собой численный метод, который применялся для моделирования случайных величин и функций, вероятностные характеристики которых совпадали с решениями аналитических задач (такая процедура получила название метода Монте-Карло). Затем этот прием стали применять и для машинной имитации с целью исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, т.е. появился метод статистического моделирования. Таким образом, методом статистического моделирования будем в дальнейшем называть метод машинной реализации имитационной модели, а методом статистических испытаний (Монте-Карло) – численный метод решения аналитической задачи.

Метод имитационного моделирования позволяет решать задачи анализа больших систем S , включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему, с заданными характеристиками при определенных ограничениях, которая является оптимальной по некоторым критериям оценки эффективности.

При решении задач машинного синтеза систем на основе их имитационных моделей помимо разработки моделирующих алгоритмов для анализа фиксированной системы необходимо также разработать алгоритмы поиска варианта системы. Бале в методологии машинного моделирования будем различать два основных раздела: статику и динамику, – основным содержанием которых являются соответственно вопросы анализа и синтеза систем, заданных моделирующими алгоритмами.

Комбинированное (аналитико-имитационное) моделирование при анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы и для тех из них, где это возможно, используются аналитические модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности.

Другие виды моделирования . При реальном моделировании используется возможность исследования различных характеристик либо на реальном объекте целиком, либо на его части. Такие исследования могут проводиться как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т.п.). Реальное моделирование является наиболее адекватным, но при этом его возможности с учетом особенностей реальных объектов ограничены. Например, проведение реального моделирования АСУ предприятием потребует, во-первых, создания такой АСУ, а во-вторых, проведения экспериментов с управляемым объектом, т.е. предприятием, что в большинстве случаев невозможно.

К основным разновидностям реального моделирования относятся:

Натурное моделирование , под которым понимают проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. При функционировании объекта в соответствии с поставленной целью удается выявить закономерности протекания реального процесса. Необходимо отметить, что такие разновидности натурного эксперимента, как производственный эксперимент и комплексные испытания, обладают высокой степенью достоверности.

Физическое моделирование отличается от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием.

С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на модели аналоговые (непрерывные), цифровые (дискретные) и аналого-цифровые (комбинированные). Под аналоговой моделью понимается модель, которая описывается уравнениями, связывающими непрерывные величины. Под цифровой понимается модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде. Под аналого-цифровой понимается модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины.

Особое место в моделировании занимает кибернетическое моделирование , в котором отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между выходами и входами. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения имитационной модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести на имитационной модели данную функцию, причем на базе совершенно иных математических соотношений и, естественно, иной физической реализации процесса.

Целевое назначение модели. По целевому назначению модели подразделяются на модели структуры, функционирования и стоимостные (модели расхода ресурсов).

Модели структуры отображают связи между компонентами объекта и внешней средой и подразделяются на:

v каноническую модель , характеризующую взаимодействие объекта с окружением через входы и выходы;

v модель внутренней структуры , характеризующую состав компонентов объекта и связи между ними;

v модель иерархической структуры (дерево системы), в которой объект (целое) расчленяется на элементы более низкого уровня, действия которых подчинены интересам целого.

Модель структуры обычно представляется в виде блок-схемы, реже графов и матриц связей.

Модели функционирования включают широкий спектр символических моделей, например:

модель жизненного цикла системы, описывающая процессы существования системы от зарождения замысла ее создания до прекращения функционирования;

модели операций, выполняемых объектом и представляющих описание взаимосвязанной совокупности процессов функционирования отдельных элементов объекта при реализации тех или иных функций объекта. Так, в состав моделей операций могут входить модели надежности, характеризующие выход элементов системы из строя под влиянием эксплуатационных факторов, и модели живучести факторов, характеризующие выход элементов системы из строя под влиянием целенаправленного воздействия внешней среды;

информационные модели, отображающие во взаимосвязи источники и потребители информации, виды информации, характер ее преобразования, а также временные и количественные характеристики данных;

процедурные модели, описывающие порядок взаимодействия элементов исследуемого объекта при выполнении различных операций, например обработки материалов, деятельности персонала, использования информации, в том числе и реализации процедур принятия управленческих решений;

временные модели, описывающие процедуру функционирования объекта во времени и распределение ресурса «время» по отдельным компонентам объекта.

Стоимостные модели, как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны, «питаются» от них информацией и совместно с ними позволяют проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономическим критериям.

При анализе и оптимизации производственно-экономических объектов проводится объединение построенных математических функциональных моделей с математическими стоимостными моделями в единую экономико-математическую модель.

Насколько можно судить по литературным источникам общепринятой классификации моделей экономических систем пока не существует. Однако представляется достаточно полезной классификация математических моделей экономических систем, приведенная в книге Т. Нейлора «Машинные имитационные эксперименты с моделями экономических систем» (1971 г.) (рис. 1.2).

Рис.1.2. Классификация экономических моделей

Экономико-математической моделью (ЭММ) называется выражение, состоящее из совокупности связанных между собой математическими зависимостями (формулами, уравнениями, неравенствами, логическими условиями величин – факторов, все или часть которых имеют экономический смысл. По своей роли в ЭММ эти факторы целесообразно подразделить на параметры и характеристики (рис. 1.3).

Рис. 1.3. Классификация факторов по их роли в ЭВМ

При этом параметрами объекта называются факторы, характеризующие свойства объекта или составляющих его элементов. В процессе исследования объекта ряд параметров может изменяться, поэтому они называются переменными, которые в свою очередь подразделяются на переменные состояния и переменные управления. Как правило, переменные состояния объекта являются функцией переменных управления и воздействий внешней среды. Характеристиками (выходными характеристиками) называются интересующие исследователя непосредст-венные конечные результаты функционирования объекта (естественно, что выходные характеристики являются переменными состояния). Соответственно характеристики внешней среды описывают свойства внешней среды, которые сказываются на процессе и результате функционирования объекта. Значения ряда факторов, определяющие начальное состояние объекта или внешней среды, называются начальными условиями.

При рассмотрении ЭММ оперируют следующими понятиями: критерий оптимальности, целевая функция, система ограничений, уравнения связи, решение модели.

Критерием оптимальности называется некоторый показатель, имеющий экономическое содержание, служащий формализацией конкретной цели управления и выражаемый при помощи целевой функции через факторы модели. Критерий оптимальности определяет смысловое содержание целевой функции. В ряде случаев в качестве критерия оптимальности может выступать одна из выходных характеристик объекта.

Целевая функция математически связывает между собой факторы модели, ее значение определяется значениями этих величин. Содержательный смысл целевой функции придает только критерий оптимальности.

Не следует смешивать критерий оптимальности и целевую функцию. Так, например, критерий прибыли и стоимости произведенной продукции могут описываться одной и той же целевой функцией:

где – номенклатура производимой продукции; – объем выпуска i -ой номенклатуры; – прибыль от выпуска единицы i -ой номенклатуры или стоимость единицы i -ой номенклатуры в зависимости от смысла критерия оптимальности.

Критерий прибыли может рассчитываться и по нелинейной целевой функции:

Если прибыль от выпуска единицы i -ой номенклатуры является функцией от объема выпуска .

При наличии нескольких критериев оптимальности каждый из них будет формализован своей частной целевой функцией , где – число критериев оптимальности. Для однозначного выбора оптимального решения исследователь может сформулировать новую целевую функцию

Однако целевая функция может уже не нести экономического смысла, в этом случае критерий оптимальности для нее отсутствует.

Система ограничений определяет пределы, сужающие область осуществимых, приемлемых или допустимых решений и фиксирующие основные внешние и внутренние свойства объекта. Ограничения определяют область протекания процесса, пределы изменения параметров и характеристик объекта.

Уравнения связи являются математической формализацией системы ограничений. Между понятиями «система ограничений» и «Уравнения связи» существует точно такая же аналогия, как между понятиями «критерий оптимальности» и «целевая функция»: различные по смыслу ограничения могут описываться одинаковыми уравнениями связи, а одно и то же ограничение в разных моделях записываться различными уравнениями связи.

Таким образом, именно критерий оптимальности и система ограничений в первую очередь определяют концепцию построения будущей математической модели, т.е. концептуальную модель, а их формализация, т.е. целевая функция и уравнения связи, представляют собой математическую модель.

Решением математической модели называется такой набор (совокупность) значений переменных, который удовлетворяет ее уравнениям связи. Решения, имеющие экономический смысл, называют структурно допустимыми. Модели, имеющие много решений, называются вариантными в отличие от безвариантных, имеющих одно решение. Среди структурно допустимых решений вариантной модели, как правило, находится одно решение, при котором целевая функция в зависимости от смысла модели имеет наибольшее или наименьшее значение. Такое решение, как и соответствующее значение целевой функции, называется оптимальным (в частности, наименьшим или наибольшим).

Использование ЭММ, особенно оптимальных, предполагает не только построение модели, соответствующей поставленной задаче, но и ее решение при помощи подходящего метода. В связи с этим иногда под моделированием (в узком смысле) понимается этап нахождения решения модели, т.е. вычисления значений исследуемых характеристик и определение оптимальности различных вариантов изучаемого объекта с целью выбора наилучшего варианта его построения и функционирования. Данный этап представляет собой реализацию и исследование ЭММ на определенном наборе вычислительных средств. Выбор метода решения оптимизационных ЭММ зависит от математической формы, связывающей факторы модели, наличия тех или иных признаков (учет динамики, учет стохастичности и т.д.). С точки зрения корректного выбора метода решения модели наиболее существенными признаками являются характер цели исследования, формализованность связей между параметрами и характеристиками, учет вероятностной природы объекта, а также фактора времени.

По характеру цели исследования ЭММ делятся на оптимизационные (нормативные) и описательные (дескриптивные или ЭММ прямого счета).

Характерной чертой оптимизационных моделей является наличие одной или нескольких целевых функций. При этом в первом случае оптимизационные ЭММ называются монокритериальными , а во втором – многокритериальными . В общем виде монокритериальная ЭММ может быть представлена следующей системой отношений:

Обращающий в max (или min ) целевую функцию Е при заданных уравнениях связи .

Специфика конкретных задач управления производством определила разнообразие типов оптимизационных ЭММ. Это вызвало для ряда наиболее часто повторяющихся типов ситуаций разработку «стандартных» экономико-математических методов их описания, например, распределительные задачи различных классов, задачи управления запасами, ремонта и замены оборудования, проектирования сетей и выбора маршрутов и т.д.

Существенным признаком описательных моделей является отсутствие в них критерия оптимальности. Решение, даваемое ЭММ прямого счета, обеспечивает либо вычисление набора выходных характеристик объекта для одного или нескольких вариантов начальных условий и входных характеристик объекта, либо нахождение какой-либо совокупности значений в структурно допустимой области решений. Примеры типовых задач управления машиностроительным производством, решаемых с помощью описательных моделей, приведены в табл. 1.1.

Таблица 1.1. Примеры описательных моделей

Тип задачи Вид модели Математический метод решения
Задачи планирования без оптимизации (расчет объемов производства по видам продукции, увязка планов производства с ресурсами и т.п.) Балансовые модели Аппарат линейной алгебры, матричное исчисление
Задачи сетевого планирования и управление (СПУ) без оптимизации Расчет по формулам модели СПУ Аппарат теории графов
Задача учета и статистики (оперативный учет, получение различных форм отчетности и т.п.) Расчет по формулам
Задачи контроля и анализа (анализ влияния и факторов, выявление тенденций, отслеживание отклонений и установление их причин) Факторный анализ, дисперсионный анализ, регрессионный анализ
Задача создания нормативной базы Статистические модели обработки реализаций случайных величин
Расчет параметров функционирования сложных систем с неформализованными связями. Расчет по формулам имитационных моделей
Задачи прогнозирования Модели регрессионного анализа, оценка параметров и проверка статистических гипотез Факторный анализ, дисперсионный анализ, регрессионный анализ, аппарат математической статистики

В зависимости от степени формализованности связей f и g i между факторами моделей в выражениях (1.4) и (1.5) различают аналитические и алгоритмические модели.

Аналитической формой записи называется запись математической модели в виде алгебраических уравнений или неравенств, не имеющих разветвлений вычислительного процесса при определении значений любых переменных состояния модели, целевой функции и уравнений связи. Если в математических моделях единственная целевая функция f и ограничения g j заданы аналитически, то подобные модели относятся к классу моделей математического программирования. Характер функциональных зависимостей, выраженных в функциях f и g j , может быть линейным и нелинейным. Соответственно этому ЭММ делятся на линейные и нелинейные , а среди последних в специальные классы выделяются дробно -линейные , кусочно-линейные , квадратичные и выпуклые модели.

Если мы имеем дело со сложной системой, то зачастую гораздо легче построить ее модель в виде алгоритма, показывающего отношения между элементами системы в процессе ее функционирования, задаваемые обычно в виде логических условий – разветвлений хода течения процесса. Математическое описание для элементов может быть очень простым, однако взаимодействие большого количества простых по математическому описанию элементов и делает эту систему сложной. Алгоритмически же можно описывать даже такие объекты, которые в силу их сложности или громоздкости в принципе не допускают аналитического описания. В связи с этим к алгоритмическим моделям относятся такие, в которых критерии и (или) ограничения описываются математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса. К алгоритмическим моделям относятся и так называемые имитационные модели – моделирующие алгоритмы, имитирующие поведение элементов изучаемого объекта и взаимодействие между ними в процессе функционирования.

В зависимости от того, содержит ли ЭММ случайные факторы, она может быть отнесена к классу стохастических или детерминированных .

В детерминированных моделях ни целевая функция f , ни уравнения связи g j не содержат случайных факторов. Следовательно, для данного множества входных значений модели на выходе может быть получен только один-единственный результат. Для стохастических ЭММ характерно наличие среди факторов модели, описываемой соотношениями (1.4) и (1.5), таких, которые имеют вероятностную природу и характеризуются какими-либо законами распределения, причем среди функций f и g j могут быть и случайные функции. Значения выходных характеристик в таких моделях могут быть предсказаны только в вероятностном смысле. Реализация стохастических ЭММ в большинстве случаев осуществляется на ЭВМ методами имитационного статистического моделирования.

Следующим признаком, по которому можно различать ЭММ, является связь с фактором времени. Модели, в которых входные факторы, а следовательно, и результаты моделирования явно зависят от времени, называются динамическими , а модели, в которых зависимость от времени t либо отсутствует совсем, либо проявляется слабо или неявно, называют статическими . Интересны в этом отношении имитационные модели: по механизму функционирования они являются динамическими (в модели идет имитация работы объекта в течении некоторого периода времени), а по результатам моделирования – статическими (например, ищется средняя производительность объекта за моделируемый период времени).

Статические модели представляют собой известную степень приближения к реальным объектам и системам, функционирующим во времени. Во многих случаях степень такого приближения, проявляющаяся в допущениях о неизменности или различного рода усреднениях факторов во времени (косвенно или приблизительно учитывающих фактор времени в определенных границах его изменения), является достаточной для практического применения статических моделей.

Аннотация: Первая тема имеет вводный, в основном, терминологический характер. Подробно раскрываются понятия модели и моделирования, их назначение как основного, а подчас, и единственного метода анализа и синтеза сложных систем и процессов. Дается обзор классификации моделей и моделирования, в некоторой мере упрощенный, но достаточный для полного уяснения сущности моделирования как вообще, так и математического в частности.

Сам по себе процесс моделирования в полной мере не формализован, большая роль в этом принадлежит опыту инженера. Но, тем не менее, рассматриваемый в теме процесс создания модели в виде шести этапов может стать основой для начинающих и с накоплением опыта может быть индивидуализирован.

Математическая модель , являясь абстрактным образом моделируемого объекта или процесса, не может быть его полным аналогом. Достаточно сходства в тех элементах, которые определяют цель исследования. Для качественной оценки сходства вводится понятие адекватности модели объекту и, в связи с этим, раскрываются понятия изоморфизма и изофункционализма. Формальных приемов, позволяющих автоматически, "бездумно", создавать адекватные математические модели, нет. Окончательное суждение об адекватности модели дает практика, то есть сопоставление модели с действующим объектом. И, тем не менее, усвоение всех последующих тем пособия позволит инженеру справляться с проблемой обеспечения адекватности моделей.

Завершается тема изложением требований к моделям, которые были сформулированы Р. Шенноном на заре компьютерного моделирования тридцать лет назад в книге " Имитационное моделирование систем - искусство и наука". Актуальность этих требований сохраняется и в настоящее время.

1.1. Общее определение модели

Практика свидетельствует: самое лучшее средство для определения свойств объекта - натурный эксперимент , т. е. исследование свойств и поведения самого объекта в нужных условиях. Дело в том, что при проектировании невозможно учесть многие факторы, расчет ведется по усредненным справочным данным, используются новые, недостаточно проверенные элементы (прогресс нетерпелив!), меняются условия внешней среды и многое другое. Поэтому натурный эксперимент - необходимое звено исследования. Неточность расчетов компенсируется увеличением объема натурных экспериментов, созданием ряда опытных образцов и "доводкой" изделия до нужного состояния. Так поступали и поступают при создании, например, телевизора или радиостанции нового образца.

Однако во многих случаях натурный эксперимент невозможен.

Например, наиболее полную оценку новому виду вооружения и способам его применения может дать война. Но не будет ли это слишком поздно?

Натурный эксперимент с новой конструкцией самолета может вызвать гибель экипажа.

Натурное исследование нового лекарства опасно для жизни человека.

Натурный эксперимент с элементами космических станций также может вызвать гибель людей.

Время подготовки натурного эксперимента и проведение мероприятий по обеспечению безопасности часто значительно превосходят время самого эксперимента. Многие испытания, близкие к граничным условиям, могут протекать настолько бурно, что возможны аварии и разрушения части или всего объекта.

Из сказанного следует, что натурный эксперимент необходим, но в то же время невозможен либо нецелесообразен.

Выход из этого противоречия есть и называется он " моделирование ".

Моделирование - это замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала.

Отсюда следует.

Моделирование - это, во-первых, процесс создания или отыскания в природе объекта, который в некотором смысле может заменить исследуемый объект . Этот промежуточный объект называется моделью . Модель может быть материальным объектом той же или иной природы по отношению к изучаемому объекту (оригиналу). Модель может быть мысленным объектом, воспроизводящим оригинал логическими построениями или математическими формулами и компьютерными программами.

Моделирование , во-вторых, это испытание , исследование модели. То есть, моделирование связано с экспериментом, отличающимся от натурного тем, что в процесс познания включается "промежуточное звено" - модель. Следовательно, модель является одновременно средством эксперимента и объектом эксперимента , заменяющим изучаемый объект .

Моделирование , в-третьих, это перенос полученных на модели сведений на оригинал или, иначе, приписывание свойств модели оригиналу. Чтобы такой перенос был оправдан, между моделью и оригиналом должно быть сходство, подобие .

Подобие может быть физическим, геометрическим, структурным, функциональным и т. д. Степень подобия может быть разной - от тождества во всех аспектах до сходства только в главном. Очевидно, модели не должны воспроизводить полностью все стороны изучаемых объектов. Достижение абсолютной одинаковости сводит моделирование к натурному эксперименту, о возможности или целесообразности которого было уже сказано.

Остановимся на основных целях моделирования .

Прогноз - оценка поведения системы при некотором сочетании ее управляемых и неуправляемых параметров. Прогноз - главная цель моделирования .

Объяснение и лучшее понимание объектов . Здесь чаще других встречаются задачи оптимизации и анализа чувствительности. Оптимизация - это точное определение такого сочетания факторов и их величин, при котором обеспечиваются наилучший показатель качества системы, наилучшее по какому-либо критерию достижение цели моделируемой системой. Анализ чувствительности - выявление из большого числа факторов тех, которые в наибольшей степени влияют на функционирование моделируемой системы. Исходными данными при этом являются результаты экспериментов с моделью.

Часто модель создается для применения в качестве средства обучения : модели-тренажеры, стенды, учения, деловые игры и т. п.

Моделирование как метод познания применялось человечеством - осознанно или интуитивно - всегда. На стенах древних храмов предков южно-американских индейцев обнаружены графические модели мироздания. Учение о моделировании возникло в средние века. Выдающаяся роль в этом принадлежит Леонардо да Винчи (1452-1519).

Гениальный полководец А. В. Суворов перед атакой крепости Измаил тренировал солдат на модели измаильской крепостной стены, построенной специально в тылу.

Наш знаменитый механик-самоучка И. П. Кулибин (1735-1818) создал модель одноарочного деревянного моста через р. Неву, а также ряд металлических моделей мостов. Они были полностью технически обоснованы и получили высокую оценку российскими академиками Л. Эйлером и Д. Бернулли. К сожалению, ни один из этих мостов не был построен.

Огромный вклад в укрепление обороноспособности нашей страны внесли работы по моделированию взрыва - генерал-инженер Н. Л. Кирпичев, моделированию в авиастроении - М. В. Келдыш, С. В. Ильюшин, А. Н. Туполев и др., моделированию ядерного взрыва - И. В. Курчатов, А.Д. Сахаров, Ю. Б. Харитон и др.

Широко известны работы Н. Н. Моисеева по моделированию систем управления. В частности, для проверки одного нового метода математического моделирования была создана математическая модель Синопского сражения - последнего сражения эпохи парусного флота. В 1833 году адмирал П. С. Нахимов разгромил главные силы турецкого флота. Моделирование на вычислительной машине показало, что Нахимов действовал практически безошибочно. Он настолько верно расставил свои корабли и нанес первый удар, что единственное спасение турок было отступление. Иного выхода у них не было. Они не отступили и были разгромлены.

Сложность и громоздкость технических объектов, которые могут изучаться методами моделирования, практически неограниченны. В последние годы все крупные сооружения исследовались на моделях - плотины, каналы, Братская и Красноярская ГЭС, системы дальних электропередач, образцы военных систем и др. объекты.

Поучительный пример недооценки моделирования - гибель английского броненосца "Кэптен" в 1870 году. В стремлении еще больше увеличить свое тогдашнее морское могущество и подкрепить империалистические устремления в Англии был разработан суперброненосец "Кэптен". В него было вложено все, что нужно для "верховной власти" на море: тяжелая артиллерия во вращающихся башнях, мощная бортовая броня, усиленное парусное оснащение и очень низкими бортами - для меньшей уязвимости от снарядов противника. Консультант инженер Рид построил математическую модель устойчивости "Кэптена" и показал, что даже при незначительном ветре и волнении ему грозит опрокидывание. Но лорды Адмиралтейства настояли на строительстве корабля. На первом же учении после спуска на воду налетевший шквал перевернул броненосец. Погибли 523 моряка. В Лондоне на стене одного из соборов прикреплена бронзовая плита, напоминающая об этом событии и, добавим мы, о тупоумии самоуверенных лордов Британского Адмиралтейства, пренебрегших результатами моделирования.

1.2. Классификация моделей и моделирования

Каждая модель создается для конкретной цели и, следовательно, уникальна. Однако наличие общих черт позволяет сгруппировать все их многообразие в отдельные классы, что облегчает их разработку и изучение. В теории рассматривается много признаков классификации, и их количество не установилось. Тем не менее, наиболее актуальны следующие признаки классификации :

  • характер моделируемой стороны объекта;
  • характер процессов, протекающих в объекте;
  • способ реализации модели.
© fiorimebel.ru, 2024
Декор. Интерьер. Стиль. Ремонт. Дача и сад