Полиэфирная смола и эпоксидная смола: отличие, характеристики и отзывы. Типы ненасыщенных полиэфирных смол

20.06.2023

Широкое применение полиэфирных смол в различных сферах промышленности, в том числе и строительства приводит к возникновению вопроса о том, как работать с данным материалом. Существует определенная технология работы с полиэфирной смолой. Об особенностях полиэфирных смол и о технике работы с ними рассмотрим далее.

Полиэфирная смола - применение материала

Существует огромное количество отраслей в которых используется смола на основе полиэфира. Предлагаем ознакомиться с самыми популярными из них:

1. Строительная отрасль.

Данный материал используется в процессе изготовления стеклопластика, который имеет дополнительное армирование из стеклоткани. Данный пластик имеет высокие механический характеристики, легкий вес, прозрачную текстуру, привлекательный внешний вид. Пластиковые детали используют при изготовлении разного рода осветительных приборов, кровель, навесных конструкций. Кроме того, из пластика на основе полиэфира изготавливают даже подоконники, карнизы, монолитные санузлы, душевые кабины. Кроме того, данный материал легко окрашивается и приобретает нужный цвет и оттенок.

2. Кораблестроительная отрасль.

В данной отрасли промышленности используется больше всего полиэфирной смолы. Большинство деталей, корпусов, иллюминаторов соединяются между собой именно с помощью полиэфирных смол. Данный материал отличается высокой влагостойкостью. Поэтому, материалы, обработанные полиэфирной смолой имеют высокие характеристики стойкости перед гниением и влагой.

3. Изготовление автомобилей - машиностроительство.

Эпоксидная смола полиэфирная является составляющей кузовов, разного рода

элементов, которые являются частью автомобилей. Кроме того, из полиэфирных смол изготавливают разного рода шпаклевочные и грунтовочные смеси.

4. Отрасль химической промышленности.

Так как полиэфирная смола отличается высокой стойкостью перед агрессивными составами, она широко распространена в химической промышленной отрасли. Полиэфир присутствует в составе труб, через которые перекачивается нефть.

Кроме того, использование полиэфирных смол связан с электротехнической промышленностью, машиностроением, деревообрабатывающей промышленностью, спортивными товарами, искусством.

Полиэфирная смола - характеристика материала

Полиэфирной смолой называют материал, который изготавливается при смешивании и переработке спиртов многоатомного назначения. Данные смолы широко применяются в разного рода отраслях. Из-за уникальности своего состава, полиэфирные смолы широко распространены в судостроении. Их использование позволяет получить легкое, но в то же время влагостойкое покрытие.

Кроме того, среди преимуществ полиэфирной смолы отметим:

  • минимальную тепловую проводность;
  • максимальную влагостойкость;
  • длительность эксплуатации;
  • стойкость перед перепадами температуры;
  • устойчивость перед механическими воздействиями;
  • противодействие химическим веществам;
  • высокие показатели надежности;
  • универсальность и широкую сферу применения.

Применение масел растительного происхождения в процессе изготовления полиэфирной смолы позволяет изготовить материал с такими же свойствами, как и неорганические смолы. При этом, в некоторых случаях, показатели долговечности и надежности увеличиваются.

Для того, чтобы изготовить двухкомпонентную полиэфирную смолу или твердый вспененный полиуретан используется вещество в виде полиола. Полиэфирные смолы - производство экологически чистых веществ, отличается такими преимуществами:

  • снижение объема переработки нефти, положительно сказывается на негативном воздействии на окружающую среду;
  • материал получается полностью безопасным и безвредным как для человека, так и для всей планеты;
  • таким образом, удается значительно сэкономить денежные средства, так как натуральные материалы являются более дешевыми.

Полиэфирная смола прозрачная: технология использования

Для того, чтобы работа со смолами на основе полиэфира была безопасной, следует ознакомиться и выполнить определенные правила. Стеклопластик - очень распространенный и нужный в строительстве предмет, для изготовления которого достаточно научиться работать с полиэфирной смолой.

Для затвердевания полиэфирных смол необходим катализатор, с помощью введения которого внутренняя часть смолы наполняется теплом. Еще один вариант полимеризации, получение смолой тепловой энергии от внешнего источника. Данный способ отличается дороговизной исполнения.

Чаще всего, после покупки смолы, к ней идет инструкция, в которой указано количество полимеризатора, который способен сделать изделие из смолы твердым. Кроме того, количество данного вещества также определяет температура воздуха, на момент добавления его в смолы.

Учтите, что работу следует выполнять постепенно, так как смола очень быстро затвердевает. Начинать работу следует с поллитра материала. Работа со смолами - довольно опасный процесс, для выполнения которого потребуется наличие специальной маски и защитных очков. Так как катализатор негативно воздействует на зрение.

Добавление катализатора к раствору смолы осуществляется постепенно, при этом составы требуют тщательного перемешивания. Однако, перемешивать ингредиенты не следует слишком быстро, чтобы в них не попало слишком много воздуха. Для получения однородного соединения следует перемешивать катализатор и смолу около трех минут.

Учтите, что до момента затвердения смолы пройдет определенное время, если по истечению пяти минут вы не увидели результата, не нужно, добавлять катализатор.

Наличие катализатора в смоле приведет к изменению ее цвета с голубого оттенка в розовый. При этом, перед отвердением следует нанести смолу на изделие, на котором планируется ее использование.

Нагрев или повышение температуры смолы, является свидетельством того, что смола начинает полимеризоваться. Для замедления затвердевания смолы, емкость, в которой она находится, помещается в резервуар с охлажденной жидкостью, например водой или непосредственно в холодильную камеру, в которой отсутствуют продукты.

Когда смола становится похожей на желе, заканчивается срок ее использования. Время, с момента соединения смолы с катализатором до этого периода, является жизнедеятельностью смолы. Среднее время использования смолы после ее разведения составляет от 20 до 60 минут, при условии, что смола имеет хорошее качество и она правильно хранилась после изготовления.

Если желатинизация смолы уже началась, а смола еще не использовалась, то смола однозначно выбрасывается. Однако, не нужно выбрасывать смолу в месте, склонном к возгоранию, так как энергия, которая выделяется в процессе соединения смолы с катализатором, способна привести к возгоранию.

При выбрасывании рабочей смолы, следует равномерно и тонким слоем разровнять ее на поверхности. При этом, работы проводятся на месте, где отсутствуют горючие материалы. Весь период полимеризации смолы регулируется изменением ее цвета. Учтите, что слишком быстрое отвердение смолы приводит к увеличению ее усадки после застывания. Помните, что катализатор вводится в каждую из порций полиэфирных смол. Оптимальная температура для работы с материалом составляет минимум 16 градусов, а максимум 40 градусов тепла. При этом идеальным диапазоном считается 25-30 градусов. При этом, присутствие прямого солнечного излучения или дождя нежелательно.

После нанесения смолы и разделения ее на поверхности, большее ее перемещать не следует. Все дальнейшие работы проводятся после полного затвердевания смолы. Среднее время ожидания составляет от одного до трех часов. При наличии вблизи участков со смолой влажности, период ожидания несколько увеличивается.

Однако, полная полимеризация смолы осуществляется по истечению нескольких дней с момента ее нанесения. При этом, если изготавливается стеклопластик, то первые дни, он отличается определенной пластичностью, легко изгибается. Поэтому, если планируется изготовления изделий из полиэфирных смол, работу следует проводить в течение нескольких дней с момента нанесения смолы. Полиэфирная смола набирает прочность на протяжении нескольких недель с момента ее нанесения. Поэтому, начинать эксплуатацию предметов, изготовленных с нее, следует только по истечению данного времени.

Особенности ненасыщенных полиэфирных смол

Использование ненасыщенных полиэфирных смол отличается высокой популярностью. Это объясняется прежде всего тем, что данные полимеры способны затвердевать даже при комнатной температуре. При этом, выделение продуктов побочного действия отсутствует. Таким образом, процесс изготовления армированного пластика и других подобных предметов, значительно упрощается.

Использование данных смол особенно актуально в случае изготовления литой изоляции, электро- и радиоприборов, стеклопластиковых покрытий и т.д. Кроме того, ненасыщенные полиэфиры используются для изготовления корпусных частей лодок и суден, в автомобильной промышленности. Для снижения трудовых затрат в процессе переработки полиэфирных смол, рекомендует обращать внимание на качество смолы при ее покупке. В таком случае, качество изделий из полиэфирных смол, будет находиться на должном уровне.

Изготовление искусственного камня полиэфирных смол

Сфера использования полиэфирных смол подразумевает изготовление из них искусственного камня. При этом, смоля является связующим звеном для наполнителя. Для того, чтобы достигнуть определенного эффекта к смоле часто добавляется крошка, краситель или наполнители. Для изготовления литьевых изделий, таких как столешницы из искусственного камня, в определенную форму сначала укладывается наполнитель крупного размера. Для того, чтобы заполнить образовавшиеся пустоты, укладывают наполнитель меньшего объема. При этом, возможно сочетание между собой резиновых, металлических, полимерных, гранитных, известняковых материалов. Кроме полимерных смол, связующим веществом выступают вещества в виде цемента, гипса, жидкого стекла.

Для того, чтобы самостоятельно изготовить материал искусственного происхождения в виде мрамора, достаточно использовать полиэфирную смолу, крошку из мрамора искусственного. Кроме того, потребуется наличие специальных красителей и наполнителей, которые помогут сымитировать мрамор.

Все составляющие вещества перемешиваются между собой и заливаются в форму. Чаще всего форма выполняется из стекла и имеет форму прямоугольника. Для затвердевания данной композиции используется сушильный шкаф, в котором присутствует горячий воздух.

После полного затвердевания композиции производится ее шлифовка, до того момента пока не обнажится крошка из искусственного мрамора. Однако, данные способы изготовления искусственного камня отличаются определенными недостатками. Среди них прежде всего, низкая прочность полученных изделий, невысокий срок эксплуатации, невысокая прочность.

Если некоторым образом изменить технологию изготовления камня, удается повысить его прочностные характеристики. Для изготовления искусственного камня используется оснастка, выполненная из полиэфира, эпоксида и других веществ. На ее поверхность наносится связующее светопрозрачное вещество, слоем до двух миллиметров. Данное вещество защитит поверхность камня от разрушения под воздействием солнца, перепадов температуры или влаги. После того как светопрозраный слой приобретет консистенцию геля, он покрывается наполнителем, в основе которого лежит гранитная и мраморная крошка. Для ее изготовления используют материалы как органического, так и неорганического происхождения. Существует несколько вариантов наолнителей- одно- или разнофракционные.

После того как композитный материал полностью затвердеет, он покрывается определенным цветом, в зависимости от цвета наполнителя и крошки. Использование подложки в основе которой лежит полиэфирная смола стекломат отличается такими преимуществами:

  • обеспечением прочности изделия;
  • определением глубины цвета;
  • уменьшением композитов в составе;
  • светопроницаемостью.

Расчет класса опасности полиэфирной смолы осуществляется в соотношении с ее составом и зависит от ее качества.

Внешний вид
Исходные полиэфирные смолы представляют из себя вязкие медоподобные жидкости от светло-желтого до темно-коричневого цвета. При введении небольшого количества отвердителей полиэфирные смолы сначала густеют постепенно превращаясь в студнеообразное состояние, после чего становятся резиноподобными и наконец твердыми, нарастворимыми и неплавкими. Этот процесс, называемый отверждением, происходит при обычной температуре в течении нескольких часов. В твердом состоянии полиэфирные смолы представляют из себя прочные жесткие материалы, легко окрашиваемые в любые цвета, и чаще всего используются в сочетании со стеклотканями (такие материалы называются - полиэфирные стеклопластики) в качестве конструкционных материалов для производства самых разнообразных изделий.


Главные достоинства
Отвержденные полиэфирные смолы представляют из себя великолепные конструкционные материалы, обладающие высокой прочностью, твердостью, износостойкостью, отличными диэлектрическими свойствами, высокой химической стойкостью, экологической безопасностью в процессе эксплуатации. Некоторые механические свойства полиэфирных смол, применяемых в сочетании со стеклотканями, приближаются к свойствам конструкционных сталей или даже превышают их.
Технология изготовления изделий из полиэфирных смол проста, безопасна и дешева, т.к полиэфирные смолы отверждаются при комнатной температуре без приложения давления, без выделения летучих и других побочных продуктов с небольшой усадкой. Поэтому для изготовления изделий не требуются ни сложное громоздкое дорогостоящее оборудование, ни тепловая энергия, что позволяет быстро освоить как малотоннажное, так и крупнотоннажное производство изделий.
К вышеперечисленным достоинствам полиэфирных смол необходимо добавить их низкую стоимость, которая в два раза ниже стоимости эпоксидных смол.
Следует отметить, что в настоящее время производство ненасыщенных полиэфирных смол как в нашей стране, так и за рубежом продолжает увеличиваться и эта тенденция сохранится в будущем.


Недостатки
Конечно у полиэфирных смол есть и свои недостатки. Так, часто используемый в качестве растворителя стирол токсичен и огнеопасен. В настоящее время разработаны марки, не содержащие стирола.
Другим недостатком является - горючесть. Немодифицированные ненасыщенные полиэфирные смолы горят подобно твердым породам дерева. Эта проблема решается путем введения в их состав порошковых наполнителей (трехокиси сурьмы, хлор- и фосфоросодержащих низкомолекулярных органических соединений и др.) или химическим модифицированием путем введения хлорэндиковой, тетрахлорфталевой кислот, а также мономеров: хлорстирола, винилхлоацетата и других хлорсодерщащих соединений.


Состав
По составу ненасыщенные полиэфирные смолы представляют собой многокомпонентную смесь химических веществ различной природы, выполняющих определенные функции. Основные компоненты из которых состоят полиэфирные смолы и и выполняемые ими функции описаны в таблице:

Наименование

Функция

Типичное содержание в смоле

Ненасыщенный полиэфирный олигомер - полиэфир

Основное полимеризующееся вещество

65-70%

Растворитель

Снижает вязкость и сополимеризуется с основным веществом

25-30%

Инициатор

Обеспечивает процесс полимеризации смолы

1, 5-8%

Ускоритель

Обеспечивает высокую скорость полимеризации

1, 5-6%

Ингибитор

Не позволяет полимеризоваться смоле в процессе хранения

0, 05%

Полиэфир, являющийся основным компонентом, представляет собой продукт реакции поликонденсации многоатомных спиртов с многоосновными кислотами или ангидридами, содержащих эфирные группы в основной цепи -СО-С. В качестве многоатомных спиртов чаще всего используют этиленгликоль, диэтиленгликоль, пропиленгликоль, глицерин и дипропиленгликоль. В качестве кислот и ангидридов используются фумаровая кислота, адипиновая кислота, малеиновый ангидрид и фталевый ангидрид. В состоянии готовности к переработке полиэфир имеет невысокую молекулярную массу (порядка 2000), а в процессе формования изделий после введения инициаторов отверждения превращается в полимер с высокой молекулярной массой и трехмерной сетчатой структурой, обуславливающей высокую прочность и химическую стойкость материала.
Второй необходимый компонент это мономер - растворитель. Причем растворитель играет двоякую роль. С одной стороны он снижает вязкость смолы до уровня, необходимого для переработки, т.к. сам полиэфир слишком густой. С другой стороны мономер - растворитель активно участвует в сополимеризации с полиэфиром, обеспечивая приемлемую скорость полимеризации и высокую глубину отверждения материала (сами по себе полиэфиры отверждаются очень медленно). Чаще всего для этой цели используется стирол, который хорошо растворим, очень эффективен и дешев, однако имеет недостаток - токсичность и горючесть.
Компонентом, необходимым для перевода полиэфирных смол из жидкого состояния в твердое, является инициатор отверждения - перекись или гидроперекись. При взаимодействии с другим необходимым компонентом - ускорителем инициатор распадается на свободные радикалы, которые возбуждают цепной процесс полимеризации, превращая молекулы полиэфира также в свободные радикалы. Цепная реакция протекает с большой скоростью и с выделением большого количества тепла. Инициатор вводится в состав смолы непосредственно перед формованием. После введения инициатора заполнение формы должно быть осуществлено за 12-24 часа, т.к. по истечении этого времени смола превратится в студнеообразное состояние.
Четвертым компонентом ненасыщеных полиэфирных смол является ускоритель (катализатор) отверждения, который как было сказано выше нужен для реакции с инициатором, в результате которой образуются свободные радикалы, инициирующие процесс полимеризации. Ускоритель может вводиться в состав полиэфиров как на стадии изготовления, так и непосредственно при переработке перед введением инициатора. Наиболее эффективными ускорителями для отверждения полиэфиров при комнатной температуре являются соли кобальта, в частности нафтенат и октоат кобальта, выпускаемые под торговыми марками НК и ОК соответственно.
Полимеризацию полиэфирных смол надо не только активировать и ускорять, но иногда и замедлять. Дело в том, что полиэфирные смолы и без инициаторов и ускорителей сами могут образовывать свободные радикалы и преждевременно полимеризоваться в процессе хранения. Для предотвращения преждевременной полимеризации нужен ингибитор (замедлитель) отверждения. Механизм его действия заключается во взаимодействии с периодически возникающими свободными радикалами с образованием малоактивных радикалов или соединений нерадикальной природы. В качестве ингибиторов применят фенол, трикрезол, хиноны и некоторые органические кислоты. Ингибиторы вводятся в состав полиэфиров в весьма небольшом количестве (порядка 0, 02-0, 05%) на стадии изготовления.
Компоненты, описанные выше, являются основными из которых собственно состоят полиэфирные смолы как связующие. Однако на практике при формовании изделий в полиэфиры вводится огромное количество добавок, несущих самые разнообразные функции и модифицирующих свойства исходных смол. К таким компонентам относятся порошковые наполнители, вводимые с целью удешевления, снижения усадки, повышения огнестойкости; армирующие наполнители (стеклоткани), применяемые с целью повышения механических свойств, красители, пластификаторы, стабилизаторы и другие.

Некоторые свойства покрытий на обнове полиэфирных смол обычного типа, а также покрытий на основе нитроцеллюлозного и мочевино-формальдегидного лаков приведены в табл. 122 Г Из этих данных со всей очевидностью следует, что полированные покрытия из полиэфирных смол имеют ряд преимуществ по сравнению с другими материалами.

Они характеризуются исключительно высоким блеском, прозрачностью, отличным внешним видом, стойкостью к действию воды, растворителей и многих других химических реагентов. Кроме того, полиэфирные покрытия стойки к действию пламени тлеющих сигарет и характеризуются отличной морозостойкостью и повышенной абразивной стойкостью.

Для получения высококачественного покрытия из полиэфирных лаков достаточно нанесения одного слоя, в то время как нитроцеллюлозные и многие другие лаки приходится наносить в два или три приема. Пленки из полиэфирных смол стойки к действию ударных нагрузок.

К недостаткам покрытий из полиэфирных лаков следует отнести трудность удаления покрытия в случае, если необходимо нанести новое. Кроме того, хотя полиэфирные покрытия стойки к царапанию, царапины на них более заметны, чем на нитроцеллюлозных пленках.

Свойства покрытий различных типов

Показатель

нитроцеллюлозный

мочевино-форм-.

альдегидный

полиэфирный

Стойкость к действию растворителей

Очень хорошая

Стойкость к царапанию

Стойкость к загрязнению

Отличная

Отличная

Очень хорошая

Стабильность цвета.

Отличная

Очень хорошая

Влагостойкость.

Очень хорошая

Отличная

Очень хорошая

Прозрачность

Очень хорошая

Отличная

Очень хорошая

Отличный

Очень хороший

Химическая стойкость

Отличная

Очень хорошая

Огнестойкость

Отличная

Теплостойкость

Толщина покрытия, наносимого в один прием, мм

Стоимость 1 м покрытия в один слой, центы

Как уже отмечалось, иногда при производстве мебели не стремятся достигнуть высокого блеска, характерного для полиэфирных покрытий.

Переработка полиэфирных лаков затруднена вследствие необходимости применения двухкомпонентных систем, а также из-за ингибирования процесса их отверждения кислородом воздуха. Последний недостаток в настоящее время преодолен благодаря разработке специальных приемов.

Известно, что поверхностный слой покрытия, полученного в присутствии воздуха из полиэфирной смолы обычного типа, остается неотвержденным в течение длительного времени. Если же отверждение пленки проводят не на воздухе, а, например, в атмосфере азота, ингибирования процесса кислородом воздуха не происходит и покрытие отверждается полностью.

При получении слоистых пластиков или отливок ингибирование кислородом не играет существенной роли, так как поверхность, контактирующая с воздухом, относительно невелика по сравнению с объемом изделия. Обычно при этом отверждение сопровождается значительным выделением тепла, которое способствует образованию дополнительного количества свободных радикалов..

Высыхание полиэфирных смол в пленках (когда отношение поверхности к объему очень велико) протекает практически без повышения температуры в массе, так каж теплота реакции в этом случае быстро рассеивается и образования свободных радикалов вследствие разогрева не происходит.

Свободные радикалы, образующиеся в результате распада перекисей или гидроперекисей, инициируют реакцию сополимеризации фумаратов или малеинатов с мономером, например стиролом. Свободные радикалы реагируют со стиролом и фумаратными (или малеинат-ными) группами полиэфира, причем образуются свободные радикалы по следующим схемам:

В присутствии кислорода радикалы, возникающие при распаде перекисей, взаимодействуют преимуще-

Эта реакция протекает чрезвычайно быстро®. Таким образом, в поверхностном слое растворов ненасыщенных полиэфиров в стироле концентрация активных свободных радикалов в присутствии воздуха снижается с большой скоростью, что сильно замедляет инициирование сополимеризации.

Было показано, что при полимеризации стирола при 50°С реакционная способность свободных радикалов, образовавшихся из перекисей, в реакциях с кислородом в 1-20 миллионов раз больше, чем в реакциях со стиролом.

Вероятно, наиболее важным шагом в развитии производства полиэфирных лаков было изобретение способов устранения ингибирующего действия кислорода на процесс отверждения путем химической модификации полиэфиров. В настоящее время известны следующие методы получения полиэфирных лаков, высыхание которых не подвержено ингибирующему действию кислорода воздуха:.

а) модификация кислотных реагентов, используемых при синтезе полиэфиров;.

б) модификация спиртовых реагентов;.

в) модификация сшивающих агентов (мономеров);.

г) введение полимеров, способных взаимодействовать с полиэфирными смолами;.

д) применение высыхающих масел;.

е) применение полиэфиров с высокой температурой размягчения;.

ж) введение в смолы восков или других всплывающих добавок;.

з) защита поверхности покрытия полиэфирными пленками;.

и) горячая сушка.

Модификация кислотных реагентов.

Недавно организовано промышленное производство полиэфирных лаков на основе тетрагидрофталевого ангидрида ’’. Эти лаки образуют нелипкие пленки, хорошо высыхающие на воздухе и обладающие твердостью, жесткостью и прекрасным блеском. В табл. 123 приведены типичные рецептуры и свойства полиэфиров, синтезированных с использованием тетрагидрофталевого ангидрида.

ТАБЛИЦА 123.

Рецептуры полиэфиров, модифицированных тетрагидрофтаЛевым ангидридом, и свойства смол на их основе

Исходные реагенты

Состав, моль

Тетрагидрофталевый ангид--рйд.... ......

Фумаровая кислота....

Малеиновый ангидрид. .

Диэтиленгликоль.....

1,2-Пропиленгликоль. . .

Дипропиленгликоль....

Полигликоль Е-200 ....

Свойства смол

Кислотное число, мг КОН/г.......

Степень этерификации, %

Вязкость по Гарднеру при 20° С..........

Цветность по Гарднеру. .

Плотность при 25° С, г

Стойкость к царапанию, г

Из полиэфирных смол такого типа, в рецептуру которых вводили глицерин, трис-(2-карбоксиэтил)-изоци-анурат или некоторое количество яблочной кислоты, получали пленки. В табл. 124 показано влияние перечисленных реагентов (модификаторов) на твердость пленок, изготовленных при 25° С и 50%-ной относительной влажности в присутствии 1,5% (по весу) 60%-ного раствора перекиси метилэтилкетона и 0,021% кобальта, введенного в составе нафтената кобальта.

ТАБЛИЦА 124.

Твердость по Сварду - Рокеру пленок на основе тетрагидрофталатов, синтезированных с различными добавками

Из данных табл. 124 следует, что твердость покрытий на основе полиэфиров, содержащих звенья трис-(2-карбоксиэтил)-изоцианурата, выше, чем в случае применения смол двух других типов.

Очевидно, что все эти модификаторы увеличивают активность полиэфира в реакциях образования трехмерной сетки. В литературе имеются сведения о том, что применение глицерина при синтезе тетрагидрофталатов является весьма перспективным.

Покрытия по стали, полученные из трех названных смол, весьма эластичны; при использовании полиэфиров, модифицированных глицерином и трис-(2-карб-оксиэтил)-изоциануратом, гибкость покрытий по алюминию недостаточна, в то время как покрытия из смолы третьей рецептуры отличаются хорошей эластичностью. Пленки из нее также превосходят остальные по стойкости к удару.

Было установлено, что изменение соотношения полиэфира и стирола или количества и состава инициатора и ускорителя не оказывает существенного влияния на свойства покрытий.

Напротив, значительные различия в свойствах покрытий наблюдаются при замене в рецептуре полиэфира.

диэтиленгликоля 1,2-пропиленгликолем или дипропилен-гликолем (см. табл. 123) . Большое влияние оказывает также изменение соотношения фумаровой и тетрагидро-фталевой кислот. Так, стойкость пленок к царапанью возрастает с увеличением данного соотношения и уменьшается при введении пропилен- и дипропиленгликоля в состав исходного полиэфира.

Поскольку реакционная способность тетрагидрофта-левого ангидрида в реакциях с гликолем выше, чем у фталевого ангидрида, процесс поликонденсации можно проводить при пониженных температурах. Пленки из полиэфиров, модифицированных тетрагидрофталевым ангидридом, отличаются большей твердостью и блеском, чем пленки на основе фталатов.

Как уже упоминалось, в патентной литературе приводятся данные о модификации свойств тетрагидрофта-латов путем введения в рецептуру полиэфира глицерина, яблочной кислоты или трис-(2-карбоксиэтил)-изоциану-рата (табл. 125) .

ТАБЛИЦА 125.

Рецептуры тетрагидрофталатов с добавками модификаторов и свойства смол на их основе

Исходные реагенты

Состав, моль

Тетрагидрофталевый ангидрид

Фумаровая кислота

Диэтиленгликоль

Г лицерин

Яблочная кислота

Трис-(2-карбоксиэтил)-изоцианурат

Свойства

Кислотное число, мг КОН/г

Степень этерификации, %

Вязкость по Гарднеру-Хольту при 25° С

Плотность при 25° С, гсм

Цветность по Гарднеру

Максимальная совместимость со стиролом, %

Во всех трех рецептурах, приведенных в. таблице, молярное соотношение тетрагидрофталевого ангидрида и фумаровой кислоты составляло 1:1. Кислотные модификаторы вводили в количестве, соответствующем 0,5 г-экв карбоксильных групп, а общее соотношение карбоксильных и гидроксильных групп равнялось 1: 1,05. Из синтезированных полиэфиров приготовляли 50%-ные растворы в стироле и получали пленки в присутствии 1,5% раствора (60%-ного) перекиси метилэтилкетона и 0,021% кобальта, вводимого в виде -нафтената кобальта.

Все эти пленки выдержали испытания на стойкость к царапанию в течение 30 суток. Во всех случаях стойкость пленок к царапанию со временем возрастала. Положительное влияние оказывала также термообработка при 50° С; при этом достигалась высокая стойкость покрытий.

Рис. 42. Влияние соотношения кислотных реагентов в рецептуре полиэфира на стойкость к царапанию пленок из отвержденных смол. Цифры на кривых - содержание стирола в исходных растворах.

Было обнаружено, что стойкость покрытий к царапанию повышается с увеличением плотности сшивки смол (рис. 42). Как видно из рисунка, в исследованных пределах отвержденные продукты на основе более концентрированных стирольных растворов имеют лучшую стойкость.

Липкость покрытий из полиэфиров высокой степени ненасыщенности (с большим содержанием фумаровой кислоты) исчезает быстрее, чем при применении продуктов малой степени ненасыщенности, хотя для полиэфиров, модифицированных тетрагидрофталевым ангидридом, во всех случаях на воздухе характерно образование нелипких пленок.

Необходимо отметить, что такие покрытия не всегда имеют удовлетворительную твердость и стойкость к царапанию (табл. 126). Так, пленки, полученные с использованием полиэфиров диэтиленгликоля, отличаются лучшей твердостью и стойкостью к царапанию, чем покрытия на основе полиэфиров 1,2-пропиленгликоля. Замена диэтиленгликоля 1,3-бутилен-, 1,4-бутилен- и нео-пентилгликолем, 2-метил-2-этил-1,3-пентандиолом или гидрированным бисфенолом А приводит к устранению поверхностной липкости, но ухудшает стойкость пленок к царапанию.

ТАБЛИЦА 126.

Поверхностные свойства покрытий из полиэфирных смол, модифицированных тетрагидрофталевым ангидридом

Как уже отмечалось, стойкость к царапанию пленок, полученных из растворов тетрагидрофталатов, возрастает со временем и становится постоянной лишь через 12-16 суток после их нанесения. Максимальные показатели твердости по Сварду-Рокеру обычно достигаются через неделю после нанесения пленки.

Покрытия на основе тетрагидрофталатов превосходят по стойкости к царапанию и ударным нагрузкам покрытия, изготовленные с применением полиэфирных смол промышленного типа, не содержащих воскоподобных добавок. Однако они уступают им в твердости.

Модификация спиртовых реагентов.

На ранних стадиях исследования для получения так называемых «неингибируемых» лаков было предложено использовать диолы специального типа, например эндо-метиленциклогексил-бис-метандиол (продукт реакции Дильса-Альдера) или 4,4- (диоксидициклогексил) -алка-ны. Эти соединения применяли для частичной или полной замены гликолей обычного типа. Так как покрытия на основе таких полиэфиров оказались недостаточно твердыми и стойкими к царапанию и действию раство-.

рителей, они не нашли промышленного применения. Значительно позднее в ФРГ и США одновременно было установлено, что введение в полиэфиры остатков p-ненасыщенных простых эфиров приводит к заметному снижению ингибирующего действия кислорода воздуха на процесс отверждения полиэфирных смол.

Следствием этого открытия было использование для данной цели ряда р, у-алкениловых простых эфиров одно-или^многоатомных спиртов-. Было найдено, что при частичной замене (в рецептуре полиэфира) обычных гликолей а-аллиловым эфиром глицерина образуются продукты, на основе которых можно получать твердые и стойкие к царапанию покрытия.

Наличие аллильной группы в составе полиэфира само по себе не предотвращает ингибирующего действия атмосферного кислорода на процесс отверждения. Для придания полиэфирам неингибируемости необходимо, чтобы аллиловая группа была связана с кислородным атомом, образующим простую эфирную связь.

Аналогичный эффект оказывают остатки простых эфиров бензилового спирта. Такая аналогия поняДна, если рассмотреть структуру этих соединений:.

Вскоре было обнаружено, что отверждение полиэфиров, синтезированных из полиалкиленгликолей, также не ингибируется кислородом воздуха. Покрытия, полученные на основе полиэфиров такого типа (в качестве ненасыщенного реагента использовали фумаровую кислоту), отличались прочностью, эластичностью и стойкостью к царапанию.

Таким образом, наличие простой эфирной группы в молекулах полиэфиров обусловливает получение «неин-гибируемых» лаков. В 1962 г. было опубликовано сообщение о полиэфирах, синтезированных с использованием диаллилового эфира триметилолпропана. Полиэфир получали конденсацией 214 вес. ч. диаллилового эфира триметилолпропана с 74 вес. ч. фталевого ангидрида до достижения кислотного числа 24. Вязкий при комнатной температуре продукт растворяли в ксилоле, после чего добавляли в раствор 0,03% кобальтового сиккатива. Затем испытывали способность раствора к высыханию, используя прибор В. К. Drying Recorder (толщина слоя лака - 0,038 мм). Результаты испытаний приведены в табл. 127.

ТАБЛИЦА 127

Пленки, полученные описанным выше способом, отличаются хорошей стойкостью к воздействию тепла и ультрафиолетового облучения, стойкостью к действию парафинового масла и хорошими электроизоляционными свойствами. В отсутствие кобальтового сиккатива такие пленки не высыхают в течение длительного времени.

Недавно получен патент на способ получения высыхающих на воздухе полиэфиров на основе алифатических спиртов, содержащих в цепи 2-7 простых эфирных групп. В качестве таких спиртовых реагентов используют триэтилен-, тетраэтилен- пентаэтилен-, гексаэтилен- и пентабутиленгликоль. Описано также применение продуктов присоединения окисей этилена или пропилена к упомянутым выше гликолям (молярное соотношение окись: гликоль составляет от 2: 1 до 5:1).

смешивают 100 вес. ч. полученного раствора с 4 вес. ч. 50%-ной пасты перекиси циклогексанона и 4 вес. ч. 10%-ного раствора нафтената кобальта и отливают пленку. Отверждение пленки начинается через 8 мин и сопровождается сильным экзотермическим эффектом.

Тонкие покрытия полностью отверждаются за 6 ч их можно с успехом полировать через 8 ч после нанесения лака. Образовавшиеся пленки эластичны и стойки к царапанию. Если такой лак нанести на дерево и на полученное покрытие сбросить шар с высоты 1,5 м, на поверхности появляется вмятина, однако трещин не образуется.

Выше упоминалось о применении аллиловых эфиров.

Введение остатков простых эфиров аллилового спирта в боковую цепь спиртовых реагентов осуществляют по методу Вильямсона. Наиболее доступные соединения этой группы - неполные аллиловые эфиры многоатомных спиртов. Одной из важнейших характеристик полиэфиров, полученных с использованием данных эфиров, является содержание боковых аллильных групп. Дженкинс, Мотт и Викер выразили «функциональность» таких полиэфиров как среднее число аллильных групп, приходящееся на одну молекулу.

Взаимосвязь «аллильной функциональности» и молекулярного веса полиэфиров на основе малеинового ангидрида, пропиленгликоля и моноаллилового эфира глицерина показана ниже:

Для получения лаков, высыхающих на. воздухе, необходимо вводить в состав полиэфира определенное количество остатков аллиловых эфиров, которое определяется экспериментальным путем. Наличие этих остатков в боковой цепи полиэфира приводит к тому, что в процессе поликонденсации может произойти гелеобразование прежде, чем будет достигнут оптимальный молекулярный вес продукта. Взаимосвязь между содержанием аллильных групп и молекулярным весом, при котором происходит гелеобразование, показана в табл. 128 на примере полиэфира, синтезированного из пропиленгликоля, моноаллилового эфира глицерина и эквимолекулярного количества малеинового и фталевого ангидридов.

ТАБЛИЦА 128

Максимальный молекулярный вес полиэфира, который достигается без гелеобразования

«Аллильная функ циональность» полиэфира

Предельно достижимый молекулярный вес не может. быть повышен за счет уменьшения содержания малеинового ангидрида в рецептуре полиэфира.

Свойства пленок из стиролсодержащих смол улучшаются при увеличении содержания остатков простых аллиловых эфиров в исходном полиэфире. Так, при замене 80 мол. % пропиленгликоля моноаллиловым эфиром глицерида получают полиэфиры, которые образуют прочные, жесткие пленки, стойкие к растворителям и царапанию ногтем. Если же в рецептуре полиэфира только 30% пропиленгликоля заменяют аллиловым эфиром глицерина, поверхность покрытия легко царапается наждачной бумагой.

Установлено, что для получения покрытий с хорошим блеском после полировки необходимо использовать полиэфиры, содержащие около 0,15 моль аллилового эфира в 100 г полиэфира; для достижения высокой стойкости покрытий к царапанию применяют полиэфиры, содержащие по меньшей мере 0,33 моль того же компонента.

Аналогично при использовании диаллилового эфира глицерина в качестве агента, вызывающего обрыв по-ликонденсационной цепи, хорошо полирующиеся пленки образуются при введении в состав полиэфира 0,3 моль данного соединения (на 100 г полиэфира).

Покрытия, стойкие к царапанию, изготовляют на основе полиэфиров, содержащих 1,45 г-моль остатков диаллилового эфира.

Одним из основных препятствий на пути применения р, у-ненасыщенных простых эфиров является относительная сложность синтеза полиэфиров на их основе. Это связано прежде всего с тем, что ненасыщенные звенья основной и боковых цепей имеют тенденцию к сополимеризации. Кроме того, в процессе поликонденсации а, p-ненасыщенных кислот с р, у-ненасыщенными диодами, простая эфирная группа может легко разрушаться под действием сильных кислот. Чтобы предотвратить эту нежелательную побочную реакцию, необходимо применять специальные меры предосторожности.

Недавно в патентной литературе приводились данные о комбинированном применении полиэфира обычного типа и полиэфира на основе ненасыщенной кислоты, насыщенного диола и ненасыщенного диола, содержащего остатки р, у-ненасыщенных простых эфиров:

Примером таких р, у-ненасыщенных эфироспиртов являются моно-ш диаллиловые эфиры триметилолэтана, бутантриола, гексантриола и пентаэритрита. Упоминается также об использовании дикарбоновых кислот, содержащих аллильные группы, например а-аллилоксиян-тарной и а, р-диаллилоксиянтарной- Полиэфиры двух типов, каждый из которых содержит ненасыщенные группы лишь одного рода, мало склонные к гомополимеризации, смешивают при комнатной температуре и получают таким образом смолу, отверждение которой не ингибирует кислород воздуха.

Одной из важнейших характеристик мономеров-растворителей, используемых в составе лакокрасочных композиций, является упругость их паров. С этой точки зрения применение стирола нежелательно, так как ощутимое количество стирола улетучивается из тонких.

пленок, особенно при продолжительном времени сушки. Для изготовления полиэфирных лаков целесообразно использовать малолетучие мономеры, способные к активной сополимеризации с малеинатами и фумаратами в присутствии кислорода воздуха. Большое значение имеет также способность мономеров смешиваться с полиэфирами с образованием низковязких растворов.

Простые полиаллиловые эфиры отвечают этим требованиям: они хорошо совмещаются с полиэфирами, образуя низковязкие композиции, которые в отвержденном состоянии не имеют поверхностной липкости. Такие мономеры легко вступают в сополимеризацию с полиэфирами и не образуют в этих условиях гомополимеров. Ниже приведены данные о температурах, развивающихся в массе полиэфирных смол в продессе их отверждения:

Соединения с аллилоксигруппами легко сополимери-зуются с фумаратами. Так, р-аллилоксиацетат образует сополимеры с диэтилфумаратом при различных соотношениях реагентов.

Интересно отметить, что со стиролом р-аллилохси-этилацетат не сополМмеризуется, а при введении этого эфира в стиролсодержащие полиэфирные смолы он, вероятно, вступает в реакцию лишь с фумаратными группами полиэфира.

Простые полиаллиловые эфиры могут быть получены из производных меламина или путем этерификации простых аллиловых эфиров глицерина фталевым ангидридом. Хотя такие мономеры хорошо сополимеризуются с фумаратами, во многих случаях их применение осложнено тем, что они образуют с полиэфирами высоковязкие смеси.

С увеличением содержания аллнльных групп улучшается способность смол к образованию нелипких покрытий. Свойства пленок, полученных при отверждении.

композиций, состоявших из трех частей полиэфира и двух частей полиаллиловых мономеров различных типов, показаны в табл. 129.

ТАБЛИЦА 129.

нальность.

мономера

Количество.

аллильных.

моль/100 2 смолы

Стойкость к.

царапанию.

через 18 ч

Время до.

Вязкость.

мономера.

Диаллиловый эфир глицерина....

Диаллиловый эфир глицеринацетата

Тетрааллиловый эфир бис-глицеринаце-тата.......

Октааллиловый эфир тетраглицерино-вого эфира пиро-меллитовой кислоты.......

Дженкинс, Мотт и Викер исследовали влияние количества тетрааллилового эфира бис-глицеринадипината на свойства полиэфирных покрытий (табл. 130).

Авторы показали, что композиция должна содержать по крайней мере 40% мономера для того, чтобы получить твердые покрытия, стойкие к царапанию. Это количество соответствует 0,35 г-экв аллильных групп на 100 г раствора и близко к оптимальному содержанию боковых аллильных групп в цепи полиэфира (см. предыдущий раздел).

Большое практическое значение имеет.то обстоятельство, что любому ненасыщенному полиэфиру можно придать «неингибируемость» путем добавления соответствующего мономера.

Действительно, значительно проще вводить в смолу. мономеры - простые эфиры аллилового спирта, чем модифицировать цепи полиэфира. Имеются сведения об уменьшении ингибирующего действия кислорода воздуха при добавлении к полиэфирным смолам ароматических мономеров, содержащих по крайней мере два изо-пропенильных радикала, например диизопропенилбензо-ла. Однако такие соединения сами по себе недостаточно эффективны для того, чтобы обеспечить высыхание лака на воздухе с образованием высококачественного покрытия. Следует также отметить, что при использовании стирол содержащих смол может нарушаться соотношение полиэфира и стирола, в частности, вследствие испарения стирола, отчего глубина отверждения смолы снижается. В связи с этим необходимо учитывать потери за счет испарения, проникновения в подложку или распыления и вводить в состав лака избыток стирола (5- 10%). Кроме того, применяя стирол в качестве мономера-растворителя, следует использовать полиэфиры повышенного молекулярного веса.

Органические добавки

Было установлено, что для устранения поверхностной липкости полиэфирных покрытий можно использовать парафин. Он растворим в исходной смоле, но в процессе отверждения практически полностью выделяется из нее, образуя на поверхности покрытия защитную пленку, предотвращающую ингибирующее действие кислорода воздуха. Этот способ получения.нелипких покрытий успешно применяется в производстве полиэфирных смол и лаков. Известны и другие «всплывающие» добавки, например стеараты, которые, однако, не применяются столь широко, как парафин.

Обычно воскоподобные добавки вводятся в количестве от 0,01 до 0,1 вес.%. После высыхания покрытия (через 3-5 ч после его нанесения) парафиновая пленка удаляется шлифовкой абразивными материалами. При последующей полировке шлифованного покрытия образуется зеркальная поверхность. Шлифовка является довольно* сложным процессом, так как воскоподобные добавки засоряют шлифовальную шкурку.

Необходимость дополнительных операций - шлифовки и полировки - служит серьезным препятствием, затрудняющим применение полиэфирных лаков. Однако получать без дополнительной обработки блестящие покрытия из смол, содержащих воскоподобные добавки, до сих пор не удается. Следует также отметить, что всплывающие добавки уменьшают до минимума потери стирола от испарения.

Одним из недостатков полиэфирных лаков такого типа является ухудшение адгезии пленок на их основе к подложке вследствие миграции в нее воска или парафина.

Поверхностный слой покрытий мутнеет в процессе всплывания парафина; после шлифовки и полировки этот процесс может продолжаться, особенно под действием тепла или ультрафиолетового облучения.

Уменьшения адгезии можно избежать, нанося вначале лак, который не содержит воскообразных добавок, а через некоторое время- раствор парафина. В этом случае парафин находится лишь на поверхности покрытия.

Введение небольших количеств ацетобутирата целлюлозы придает лакам способность образовывать нелипкие пленки при высыхании на воздухе и имеет ряд дополнительных достоинств:.

а) предотвращает стекание с вертикальных поверхностей;.

б) ускоряет гелеобразование;.

в) предотвращает образование раковин и неровностей;.

г) повышает поверхностную твердость;.

д) повышает теплостойкость покрытия.

Для приготовления неингибируемых лаков к полиэфиру при 150° С добавляют низкомолекулярный ацетобутират целлюлозы и после полного его растворения прибавляют мономер-растворитель. Если сначала растворяют полиэфир в мономере, то ацетобутират вводят в раствор приблизительно при 95° С; при этом возможны потери мономера (1-2%) вследствие испарения. Ацетобутират целлюлозы не только улучшает качество лаков и покрытий, но и является загустителем и регулятором вязкости лаков. Для эффективного предотвращения ингибирующего действия кислорода иногда поверх свеже-нанесенного незаполимеризованного слоя полиэфирной смолы наносят слой лака на основе бутирата и мочеви-но-формальдегидной смолы. Получая такое поверхностное покрытие непосредственно после нанесения полиэфирной смолы, удается избежать неполного отверждения поверхностного слоя смолы.

Способ, позволяющий избежать гелеобразования, заключается во взаимодействии полиэфира с концевыми карбоксильными группами с частично эпоксидированной алкидной смолой на основе кислот высыхающих масел. Эти соединения реагируют при относительно низких температурах, что предотвращает протекание реакции Дильса - Альдера.

Полиэфиры, способные к высыханию на воздухе, получают также при взаимодействии диглицерида, полиэфира с концевыми гидроксильными группами и диизоцианата.

Однако такие продукты не получили широкого применения, что можно объяснить серьезными трудностями, возникающими при их производстве. Для придания полиэфирам способности к высыханию на воздухе необходимо вводить в их состав значительное количество соединений на основе кислот высыхающих масел. Кроме того, некоторые из этих продуктов плохо сополимеризу-ются со стиролом или малеинатными звеньями и вызывают изменение цвета пленки при ее старении.

Другой способ, позволяющий получать нелипкие покрытия, заключается в применении полиэфиров, которые даже в неотвержденном ‘состоянии настолько жестки, что пленки на их основе могут подвергаться полировке без засорения полировочного материала.

Обычно твердость полиэфиров и температура их размягчения взаимосвязаны. Для получения нелипких покрытий пригодны полиэфиры с температурой размягчения выше 90° С. В гл. 6 показано, что температура размягчения, может быть повышена несколькими способами. Например,при использовании циклических диолов, таких, как циклогександиол, удается получить полиэфиры с повышенной твердостью и температурой размягчения. Аналогичное влияние на эти свойства оказывает внедрение полярных групп в цепь полиэфира.

Таким образом, применяя соответствующие компоненты или вводя специфические группы в полиэфиры, можно существенно повысить их температуру размягчения.

Пропиленгликоль ф--j- гидрированный бисфенол А* . . . .

о-Фталевая ф- малеиновая

Подобное же влияние на свойства полиэфиров оказывает введение амидных групп путем частичной замены используемых при синтезе гликолей этаноламином или этилендиамином.

Такой эффект наблюдали, например, в случае заме-ны.аминами большей или меньшей части пропиленгликоля при синтезе полипропиленгликольмалеинатизофта-лата (молярное соотношение кислотных реагентов равно 1: 1).

Сравнивая влияние эквимолекулярных количеств мо-ноэтаноламина иэтилендиамина на температуру размягчения полиэфиров, можно сделать вывод о большей эффективности этилендиамина (табл. 132).

Обычно получение ненасыщенных полиэфиров с высокой температурой размягчения не составляет особых трудностей, однако лаки на их основе имеют ряд существенных недостатков. Так, отвержденные покрытия, хотя и отличаются твердостью, хрупки и чувствительны к действию растворителей. При переменном охлаждении и нагревании пленки имеют тенденцию к растрескиванию. Эти недостатки связаны, главным образом, с потерями.

Более современные методы предотвращения ингибирующего действия кислорода воздуха, которые были описаны в предыдущих параграфах, позволяют получить покрытия высокого качества без существенного удорожания материалов.

Защита поверхности с помощью полимерных пленок.

Этот метод заключается в защите поверхности лакокрасочного покрытия целлофановой или териленовой пленкой и предотвращении, таким образом, ингибирующего действия кислорода на отверждение полиэфирных смол. Кроме того, в случае применения пленок не наблюдается заметных потерь стирола вследствие испарения. Такой способ защиты поверхности используют также при изготовлении некоторых видов слоистых пластиков и при отверждении наружного слоя стеклопластиков. Для получения других видов покрытий этот метод не представляет практического интереса.

«Горячее» отверждение.

Твердые полиэфирные покрытия получают, отверждая смолы при температурах порядка 100° С или выше. При этом нет необходимости в использовании специфических добавок или полиэфиров специальных типов. В процессе отверждения при высоких температурах возможны значительные потери стирола, что отрицательно сказывается на качестве поверхности покрытия. В связи с этим целесообразно использовать смолы, содержащие высококипящие мономеры.

Сообщалось, что некоторые полиэфирные лаки горячей сушки образуют покрытия, сравнимые по твердости с покрытиями на основе меламино-алкидных смол. Такие лаки отверждают, используя инфракрасный обогрев, при 100° С в течение 5 мин. При этом образуются блестящие покрытия, не требующие специальной полировки.

СОПОЛИМЕРИЗАЦИЯ ДВУХКОМПОНЕНТНЫХ СИСТЕМ.

В настоящем разделе рассматриваются закономерности сополимеризацищ протекающей с участием свободных радикалов. Свободные радикалы могут генерироваться различными путями, включая термический или фотохимический распад таких соединений, как органические.

Как показали испытания сополимеров со стиролом смешанных ненасыщенных полиэфиров низкомолекулярных гликолей (этиленгликоля, Ди- и триэтиленгликоля) и полиэтиленгликоля молекулярного веса 17Й0, предел прочности при растяжении уменьшается при повышении содержания полиэтиленгликоля в составе полиэфира вследствие снижения плотности поперечных связей. В то же время эластичность сополимеров резко повышается и, достигнув максимума, начинает уменьшаться в результате увеличения межмолеку-лЯрного взаимодействия полиэфирных звеньев. При использовании полиэтиленгликоля молекулярного веса 600 зависимость величины относительного удлинения сбполимера от состава исходного полиэфира имеет монотонный характер [Л- Н. Седов, П. 3. Ли, Н. Ф. Пугачевская, Пласт, массы, № 11, 11 (Шбб); Доклад на 2-й Международной конференции по стеклопластикам и заливочным смолам, Берлин, 1967]. - Прим. ред.

Полиэфирные смолы нашли широкое применение абсолютно во всех сферах производства как серийного и промышленного, так и единичного, кустарного. Частные мастера используют этот полимерный материал в своих эксклюзивных изделиях, в условиях фабричного производства такие быстросохнущие составы высокого качества также незаменимы. Особыми свойствами обладают ненасыщенные разновидности полиэфиров.

Преимущества использования

Ненасыщенные смолы обладают несколькими важными преимуществами:

  • высокой скоростью реакции;
  • простотой эксплуатации;
  • безопасностью для того, кто с ними работает.

Для затвердевания не нужны дополнительные условия. Достаточно даже комнатной температуры. В то же время материал не выделяет никаких веществ в воздух и является экологичным. Готовое изделие оказывается более прочным, ему не страшны прямые солнечные лучи. Работать со смолой этого типа совсем не сложно, она пластична и достаточно быстро затвердевает, поэтому становится возможной работа с мелкими элементами и крупными изделиями, со сложными формами. Приобрести качественный материал данного вида можно, к примеру, на странице http://www.polypark.ru/catalog/polyester-resins .

Сфера применения

Использование ненасыщенных полиэфиров практически ничем не ограничено. Изначально они использовались в армировании для судостроения, но затем стали излюбленным материалом у производителей различной электроники, а постепенно проникли и в спортивную среду, в декораторское искусство.

Ненасыщенная смола может стать прекрасной основой для поверхностей и изделий из искусственного камня. После смешивания с наполнителем натурального происхождения она заливается в специальную форму, где и застывает, превращаясь в монолит. Пройдя этап шлифовки, такая заготовка превращается в идеально ровную и невероятно красивую столешницу, раковину, плитку и так далее. В отличие от других компаундов, ненасыщенная смола придает изделию максимальную прочность, делает его долговечным и выгодным с точки зрения покупки. Аналогичными свойствами обладает и полимербетон. Благодаря сочетанию двух структур он получает уникальные характеристики теплопроводности, гидроизоляции. Если обычные бетонные блоки быстро впитывают влагу и из-за этого разрушаются при промерзании, то добавление смолы ненасыщенного типа решает эту проблему полностью.

Смолы данного вида отличаются и устойчивостью к большинству негативных внешних воздействий. Именно поэтому их активно используют в создании спортивного и туристического снаряжения, в производстве современной сантехники. Полиэфиры ненасыщенного типа не портятся под воздействием химических соединений, они не выгорают, не боятся экстремального перегрева, не трескаются при резком охлаждении, не деформируются даже после длительной эксплуатации в неблагоприятных условиях. Именно поэтому лучшие доски для серфинга и катания имеют в своем составе смолы, как и элитные ванны, качественные душевые поддоны, оригинальные и долговечные раковины.

Полиэфирами называются такие полимеры, в цепях макромолекул которых имеются кислород содержащие простые эфирные группы вида - С - О - С - или сложноэфирные группы вида

Первый тип полиэфиров называется простые полиэфиры, а второй тип - сложные полиэфиры. В деревообработке сложные поли- или олигоэфиры применяются в значительных объемах.

Сложные поли- или олигоэфиры подразделяют на насыщенные и ненасыщенные.

В цепях молекул насыщенных поли- или олигоэфиров нет кратных двойных связей. Насыщенные полиэфиры получают поликонденсацией насыщенных двухосновных кислот (или их ангидридов) с двух- или трехатомными спиртами.

Насыщенные олигоэфиры, полученные в присутствии растительных масел, называются алкидными смолами.

Насыщенный олигоэфир на основе двухатомного спирта этиленгликоля и адипиновой кислоты имеет следующее строение:


Ненасыщенные полиэфиры получают поликонденсацией непредельных (ненасыщенных) двухосновных кислот (или их ангидридов) с двух- или трехатомными спиртами, поэтому в цепочках молекул получаемых олигомеров или полимеров имеется реакционноспособная двойная связь - R - СН = СН - R -.

Ненасыщенный полиэфир на основе непредельного малеинового ангидрида и двухатомного спирта этиленгликоля имеет вид:


В деревообработке широко используются следующие полиэфирные смолы:

· насыщенные алкидные олигоэфиры (глифтали и пентафтали), а также

· ненасыщенные полиэфирмалеинаты или полиэфиракрилаты.


Алкидные глифталевые смолы синтезируют конденсацией глицерина с фталевым ангидридом в присутствии жирных кислот растительных масел в расплаве при температуре 220-240 0 С. Получают олигомеры следующего строения:


В результате конденсации образуются линейные и разветвленные термореактивные олигомеры, которые впоследствии медленно отверждаются за счет взаимодействия оставшихся реакционноспособных гидроксильных - ОН и карбоксильных групп - СООН и образуют сетчатые нерастворимые и неплавкие покрытия.

Внешние признаки глифталей. Это высоковязкие липкие полупрозрачные вещества. Цвет глифталей от светло-желтого до желто-коричневого.

Основные свойства. Глифтали имеют молекулярную массу от 1500 до 5000. Они растворяются в толуоле, спирте, ксилоле, уайт-спирите. Обычно глифтали сразу растворяют в органических растворителях и получают растворы с концентрацией олигомера (глифталя) 4060%. Плотность растворов 900 - 1050 кг/м 3 .

Глифтали - реактопласты и при комнатной температуре медленно отверждаются или как обычно говорят "высыхают". В отсутствие растительных масел при отверждении наблюдается значительная усадка материала и после "высыхания" образуются хрупкие покрытия.

Для снижения усадки, ускорения отверждения и повышения эластичности покрытий глифтали модифицируют растительными маслами.

В зависимости от количества добавленного масла различают следующие виды глифталей:

· Сверхтощие ГФ. В них содержание масла менее 34%.

· Тощие глифтали с содержанием масла от 34% до 45%.

· Средние ГФ, в которых растительного масла от 46% до 55%.

· Жирные глифтали содержат от 56% до 70%.

· И очень жирные глифтали, в которых масла может быть более 70%.

Температура эксплуатации отвержденных покрытий на основе глифталей от -- 20 0 С до + 100150 0 С.

Применение глифталей. Глифталевые смолы (олигомеры) преимущественно используют:

как основной компонент (основу) лакокрасочных (отделочных) материалов, таких как лаки, эмали, краски, грунтовки

как основу клеев,

как связующее в производстве стеклопластиков,

для пропитки текстурных и кроющих бумаг в производстве бумажных смоляных пленок для облицовки мебели.

Более 70 % всего объема выпускаемых алкидных полиэфирных смол идет на изготовление лаков и эмалей. Покрытия или клеевые швы после отверждения глифталей обладают антикоррозионными свойствами, приятным внешним видом, хорошей атмосферостойкостью и термостойкостью до 150 0 С.

Помимо масел для ускоренного отверждения в глифтали добавляют ускорители - сиккативы, в основном, нафтенаты или резинаты кобальта и марганца.

Пентафтали (ПФ)

Алкидные пентафталевые смолы получают так же как глифталевые, только вместо глицерина используют четырехатомный спирт - пентаэритрит. Получают олигомеры следующего строения:


В результате конденсации сначала образуются разветвленные термореактивные олигомеры, которые впоследствии отверждаются за счет взаимодействия оставшихся реакционноспособных гидроксильных - ОН и карбоксильных групп - СООН и образуют сетчатые нерастворимые и неплавкие покрытия. Реакционная способность пентаэритрита выше, чем у глицерина, поэтому отверждение пентафталей происходит быстрее и легче.

Внешние признаки пентафталей такие же, как у глифталей.

Основные свойства и области применения пентафталей похожи на те, которые свойственны глифталям.

В ходе отверждения пентафталевых алкидных смол также получаются хрупкие покрытия и наблюдается усадка материала, поэтому алкидные пентафталевые смолы модифицируют маслами, мочевиноформальдегидными олигомерами, кремнийорганическими жидкостями, нитроцеллюлозой и др. реагентами. Для ускорения «высыхания» покрытий в пентафтали также вводят сиккативы.

После модификации скорость отверждения пентафталей возрастает. Отвержденные покрытия на основе пентафталей имеют большую механическую прочность, срок службы и температурные границы эксплуатации, чем покрытия на основе глифталей.

Изделия, защищенные покрытиями на основе алкидных смол, могут эксплуатироваться на открытом воздухе. Алкидными лаками, эмалями (например, эмалью ПФ-115) , грунтовками, шпатлевками покрывают кузова автомобилей, вагоны метро, сельскохозяйственную технику, корпуса холодильников, паркетные полы, оконные рамы, детали мебели, лыжи и др. изделия.

Материалы на основе глифталевых алкидных смол маркируют буквами ГФ, на основе пентафталевых смол - буквами ПФ.

Полиэтилентерефталат (ПЭТФ или ПЭТ)

Полиэтилентерефталат также относится к группе насыщенных полиэфиров.

Насыщенный полиэфир на основе двухатомного спирта этиленгликоля и терефталевой кислоты имеет следующее строение:


Внешние признаки полиэтилентерефталата. Кристаллический ПЭТФ - белое твердое и прочное вещество без запаха. Аморфный ПЭТФ - прозрачный бесцветный полимер. Тяжелее воды. При температуре выше 100°C полиэтилентерефталат гидролизуется (разрушается) растворами щелочей, а при 200°C - даже водой.

Основные свойства. ПЭТФ - термопласт, имеющий плотность 1380 - 1400 кг/м 3 и температуру плавления ~ 255 - 265 0 С. Температура размягчения ~ 245 - 248 0 С. Обладает высокой химической стойкостью; на холоду не растворяется в воде, в традиционных органических растворителях, в разбавленных растворах кислот и щелочей. Устойчив в растворах отбеливающих агентов. Растворяется только при нагревании до 40 - 150 0 С в ароматических (подобных по строению) углеводородах, таких как фенол, крезол, в спиртобензольной смеси. Устойчив к действию моли и микроорганизмов, хороший диэлектрик. Полиэтилентерефталат характеризуется высокой прочностью, устойчивостью к истиранию и многократным деформациям при растяжении и изгибе; устойчив к действию световых, рентгеновских, -лучей. Температурный интервал эксплуатации от - 60 0 С до + 170 0 С.

Применение полиэтилентерефталата. Около 80% всего выпускаемого ПЭТФ идет на изготовление волокна типа «лавсан». Другие торговые названия волокна - терилен, дакрон, тетерон, элан, тергаль, тесил. Волокна не сминаются, имеют высокую прочность, эластичность, стойки к действию света, к истиранию. По свойствам близки к ацетатным волокнам. Модифицированные волокна хорошо окрашиваются.

Из волокон ПЭТФ изготавливают ткани технического назначения для спецодежды, брезента, рыболовных сетей, канатов, пожарных шлангов, ремней. Кроме того из волокон ПЭТФ производят мебельные и драпировочные ткани для обивки мягкой мебели.

Около 20% выпускаемого ПЭТФ идет на изготовление пленки. Пленки прозрачные, прочные, не пропускают пары воды, кислород, азот и пары растворителей. В связи с этим их применяют для упаковки пищевых продуктов, для изготовления бутылей для газированных напитков и соков. Кроме того пленки используют в качестве подложки различных лент для аудио- и звукозаписи, в производстве кино- и фотопленки.

Ненасыщенные олиго- и полиэфиры

Среди ненасыщенных полиэфиров наиболее распространены продукты конденсации малеинового ангидрида с этиленгликолем, которые называют олигоэфирмалеинаты и имеют следующее строение:


Получаемые олигоэфирмалеинаты содержат ненасыщенную связь - R - СН 2 = СН 2 - R -, которая способна легко отверждаться при комнатной температуре без выделения низкомолекулярных побочных продуктов.

Внешние признаки олигоэфирмалеинатов. Это прозрачные бесцветные жидкости невысокой вязкости. Пропускают 92 % солнечного света. Не изменяют естественного цвета древесины.

Основные свойства. Олигоэфирмалеинаты - реактопласты плотностью 1100-1500 кг/см 3; имеют молекулярная массу от 300 до 3000 и хорошо растворяются в органических растворителях и в мономерах. Растворы олигоэфирмалеинатов имеют невысокую вязкость, прозрачны и не изменяют естественного цвета древесины. Отличаются хорошей адгезией к стекловолокну, бумаге и металлам. При «высыхании», т.е. отверждении с образованием прочного полимера сетчатой структуры, наблюдается минимальная усадка покрытий.

Как правило, ненасыщенные олигоэфиры растворяют при Т = 70 0 С в мономере (чаще всего в стироле) и получают 60-75 %-ные растворы. Эти растворы называют ненасыщенными полиэфирными смолами НПС. Они служат основой связующих в производстве стеклопластиков, применяются для пропитки бумаг и для изготовления лаков, эмалей и грунтовок.

Ускоренное отверждение покрытий проводят либо при нагревании, либо под действием ультрафиолетовых (УФ) или инфракрасных лучей (ИК), либо под воздействием пучка ускоренных электронов (ПУЭ). Отверждение (сшивание) молекул происходит за счет раскрытия двойных связей в молекулах олигоэфиров и в молекулах мономера стирола, в результате чего молекулы олигоэфира сшиваются «мостиками» из молекул стирола.

Для устранения хрупкости, повышения эластичности и механической прочности покрытий ненасыщенные олиго- (поли)эфиры модифицируют насыщенными кислотами (адипиновая, себациновая, фталевая). Покрытия на основе модифицированных полиэфиров твердые, механически прочные, обладают блеском, хорошими электроизоляционными свойствами и стойки к действию воды, бензина, масел и разбавленных кислот. Покрытия устойчивы до температуры +80 - +100 0 С.

Применение ненасыщенных поли- и олигоэфиров. Из них получают изоляцию в электро- и радиотехнике, цементы, наливные полы, а также стеклопластики. Стеклопластики используются для изготовления кузовов, бамперов, тюнинговых деталей автомобилей. Из стеклоткани, пропитанной ненасыщенным полиэфиром, формуют корпуса лодок и катеров, устраняют повреждения на кузовах автомобилей, лодок и катеров. Ненасыщенные полиэфирные смолы дешевле и удобнее, чем эпоксидные. Они менее вязки, легко наносятся и быстро отверждаются при обычных условиях. Ненасыщенные полиэфирные смолы хорошо совмещаются с различными пигментами, красителями, пластификаторами и сухими сыпучими наполнителями (мел, тальк, песок, каолин и т.д.) Из них методом заливки в формы изготавливаются изделия декоративного назначения: фурнитура, статуэтки, пуговицы и др. галантерейные изделия, полимербетоны и искусственный камень (столешницы мебели, подоконники, плинтуса, облицовка каминов, раковины, ванны, мойки, плитка).

Лаки и грунтовки на основе ненасыщенных полиэфиров условно обозначают буквами ПЭ, ПН, НПС. Лаки применяют для отделки мебели по высшему классу, для отделки теле- и радиоаппаратуры (например, лак холодной сушки марки ПЭ-265).

Полиэфирными клеями склеивают между собой асбоцементные и древесноволокнистые плиты, сотопласты и др. материалы.

© fiorimebel.ru, 2024
Декор. Интерьер. Стиль. Ремонт. Дача и сад